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Analysis of Gutenberg-Richter b-value and m___
PartI: Exact Solution of Kijko-Sellevoll Estimator of m___

Mika Haarala'*y Lia Orosco'”

Abstract

This report is the first of a series of three which have the main goal to achieve a method to
estimate the parameters f andm_, that are essential when Gutenberg-Richter law is used for
seismic hazard assessment.

We give the exact solution of Kijko-Sellevoll approach to estimateand also a new method to
calculatem_, applying series. It proved to be numerically more stable even in the cases when
wide range of magnitudes or large catalogue is used.
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Resumen

Este es el primero de una serie de tres informes sobre un trabajo que tiene como principal
objetivo lograr un método para estimar los parametros 8y ., que son esenciales cuando se
utiliza la ley de Gutenberg — Richter para la estimacién de la peligrosidad sismica.

Proponemos la solucién exacta del método de Kijko-Sellevoll para estimar m_,_ como asi tam-
bién mostramos un nuevo método para calcular m_,_aplicando series. Este método es numéri-
camente mas estable, aun en los casos en que se utiliza un catdlogo sismico en el que los valores

se ubican en un intervalo amplio de magnitudes.

Palabras clave: Mmax - b - funcién de distribucién Gutenberg-Richter - estimador de Kijko-
Sellevoll - series

Introduction

In seismic hazard assessment studies, the very well-known frequency-magnitude distribution
(Ishimoto, Iida, 1939; Gutenberg, Richter, 1944), commonly known as Gutenberg-Richter law,

log,yN(M)=a-bM
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is the cumulative number of events with magnitude grater or equal than M, a and b are some
unknown constants to be determined by some method. When a probabilistic approach is used,
the Gutenberg — Richter probabilistic density function

f(m)=Bexp|~5(m—m,,) M

or the double truncated Gutenberg-Richter distribution function

oy Bexp[-B(m—m,,)] )
flm) =1z exp[—3 (M —myy, )|

are still applied and investigated (Anagnostopoulos et al., 2008; Ishibe, Shimazaki, 2008; Kahraman
etal.,2008; Leyton et al., 2009; Amorese et al., 2010; Holschneider et al., 2011; Z4diga, Figueroa-
Soto, 2012; Kijko, Smit, 2012; Mostafanejad et al., 2013; Rong et al., 2014; Marquez-Ramirez et
al,, 2015).

In (1) and (2) the g -value is related with b as 8 = blog(10) , m,;, is known like threshold of
completeness of seismic catalogue and 712, is the maximum earthquake probably to occur.

In 1965, using moments of Gamma distribution function, Utsu (1965) derived a simple
estimator for f-value, in the case of unbounded expression (1). Aki (1965) showed that this
estimator is also a maximum likelihood estimator for the Gutenberg-Richter distribution
function. In this work we will call it as Aki-Utsu estimator, which has been quite popular
because of its simplicity.

Page (1968) proposed a maximum likelihood estimator for the bounded expression (2)
which needs to be solved iteratively and it needs to estimate someway the parameterm,___ .
Normally this is set to maximum observed magnitude.

Hamilton (1967), studying the stability of mean value and variance of sequences of
earthquakes, used the moment method moments; later, Cosentino (Cosentino, L.uzio, 1976;
Cosentino et al., 1977) published the moment method estimators for the Gutenberg-Richter
distribution function.

In1984, Kijko (1984) presented for the first time his idea to calculate the estimator of m__ .
Later, Kijko and Sellevoll (1989) developed the method itself using the double truncated
Gutenberg-Richter distribution function (2). Kijko and Graham (1998), with basis in Cramer’s
approximation (Cramer, 1961), generalized this method making possible to apply it for different
distribution functions. Kijko (2004) called the estimator of m__of the Gutenberg-Richter model
(2) as a «Kijko-Sellevoll (KS) estimator».

When applying Gutenberg-Richter model, parameter # must be defined a priori with some
hypothesis; m_, is set as the maximum observed magnitude, as infinity or that determined by
empirical formula when possible.

The objectives of this work are to show the algebraic solution to KS estimator, and to propose
amethod to estimate m,__. This work is the first part of a series of three, which have the main goal

to achieve a method to estimate # and m_,_by using exact solution of Gutenberg-Richter law.

max
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Exact solution of Kijko-Sellevoll estimator

Firstly we give the exact solution of KS model using exact value of 4. Actually K-S estimator
has two different solutions: first one (Kijko-Sellevoll function 1, named as KS-1) is a solution of
the original KS model and the second one (Kijko-Sellevoll function 2, named as KS-2) is its
counterpartsuchas "'+ %7 = g(m_ -m_ )

In this work we are analyzing the double truncated Gutenberg-Richter distribution function
(2) which has cumulative distribution function (CDF)

0, form<m
l—exp[—,b’(m -m,, )J
1 - exp[_ﬂ(mmax - mmin ):|

1 form , <m.

min ?

Fyy(m|m, )= form,,, <m<m

max ° (3)

Because the unbounded limit of this distribution function exists

o . 0. form<m
=)= i B (1) = o p(momy)] form

min 2
FM(m‘mmax Sm,

min

and the lower limit exists

0, form<m

‘min >

Mgy =My

FM(m‘mmax:mmin): lim FM(mmmaX):{l form . <m

we assume that m,, [m,; 0]

Let M\, M,,..., M, e[m,_,,,m_, |beasetof randomvariables (which we shall call catalogue C, of
size n).Let M, <M, <--<M, denotetheordered valuesof M, M,,..., M, . Thatis to say,
the random variable M, is a maximum in the catalogue C,.We assume also that these random
variables are independently and identically distributed (IID) with CDF F,, (m) given by (3) .
Let m <m, <---<m, beanordered sample of magnitudes where m, is a minimum observed
magnitude (M, < m(l)) and m,, is a maximum observed magnitude (m(,,) <m). This m

(n)
has a CDF

0, form<m,,,
FM(,,) (m | mmax) = |:FM (m ‘ mmax ):|n for mmin S m< mmax’ (4)
L form_, <m.
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Integrating by parts, the expected value of M, is

Minax. Minax

E(M(n)‘mma ) _[ mdF (m|m = - I m|mmax)dm. 5)

Miin

Then Kijko set

mmax

mmasz(M(n)\mmax)-i— J. F, (m\mmax)dm.

(n)

”me

(In Appendix A we show the Kijko’s method to find the estimator m

max )

We define a new function

m

g(m)=[m—E(M,, I, )|~ [ £y, (m1m)dm, ©)

”Zmln

where me [mmin,oo] .For the estimator m,,_holds g(m,, )=0because it is a solution of equation
(5). Function g is negative at the point m = E(M(”) [m, ) since in equation (6) the first term is
zero and, because of Fy, (m | m) is a positive function for any fixed 7 (i.e. n <o ), the integral is
positive.

The derivative of function gin (6) is (using Leibniz’s theorem for differentiation of an
integral; Abramowitz, Stegun, 1972)

0

g'(m)=1-F, (m|m)- I—F( (m|om)dm

:_nT[FM(m\aﬁ)JnlaiF (m] o) dm=>0

”1“““

forall s € Jm,;,,o0[ since &,, F,, (m|m)<0 .Thus g isamonotonically increasing function and
because we showed above that there exists at least one point where the function g is negative, so
it has at most one solution for g (71, )=0.This makes attractive the idea to apply the Newton-
Raphson method to find the estimator m,__ .

To find the solution of the last integral in equation (5 )we write

mmax

l—exp[—ﬂ(m—mmm)] " dm
A= j FM()(m\m )dm=m£"( ) . ®)

S (1-exp[ = (= m,,)])

mmax

We can calculate the derivative for (l —exp [—ﬂ(m -m, )])n as
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S e

n

- (1 - eXp[—ﬁ(m - mmin )])’Fl >
which gives the integration formula

max.

.....

Applying this » times we can eliminate the power (on the last step the power is equal to zero) and
the integral (8) can be expressed by

n (1—exp| =B(m,,, —m,, '
lﬁ(mmax—mmm)—k_l( ol Al Ul o)

ﬂ (l—exp _,B(mmax My )])n

A=

To the logarithm function holds (Abramowitz, Stegun, 1972)

®© k
—log(l—z)=z%, o<t z=1. (10)
k=1

We can write now
By =, ) =—log [1 - (1 - exp[—ﬁ(mm?lx -m, )])]

Setting z=1 —exp[—ﬂ(mmax —-m, )] we see that conditions of (10) i.e.0<z <1 holds when
My €[my 0] and applying this to equation (10) we have

max min ?

L (l—exp[—ﬂ(mmax — My )])k (11)
ﬂ(mmax _mmin)_z k ’

Hence the sum in (9) represents the first # terms of the series (11) sowe canrewrite(9) in the
form
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Dividing each term by denominator and re-indexing the series we get the final result

1 e (= [Aln-m,)]) 12
A‘E; k+n . "

This is equal to the solution (9) when 7 is an integer. In the series (12) the variable 7 is
continuous (7 € R) and it has a derivative, whereas the solution (9) has not it. In Appendix B we
give the method to calculate directly the numerical values for the series (12). In normal cases
when 7 is small andm,, —m,_, is enough big, we can get numerical results of the series by
using the solution (9) . Any way it is recommended to use the method of series given in appendix
B to avoid the numerical instability of the formula (9).

Now it is possible to rewrite the expression of expected value (5) as

(l - exp[—ﬂ(mmax — M )])k
: (13)
i k+n
The right side is the Kijko-Sellevoll function 1 (KS-1 or 7). In fact the actual form of the
functionis y = £ (x) wherex = g(m,,, —m,;, )and y = ,b’[mmx —E(M(n) |m,. )J . Explanation of
this is abstract. If we change the variable in the distribution function(3) setting m = x/3+m
with 8 >0 we get a normalized CDF

‘min ?

0, for x <0,
Fy(x|x,)= Loexp(=x) for0<x<x__,
max l—exp(—xmax) max
1, forx,, <x.

where x, = g(m,, —m,, )is a pseudo maximum magnitude. This is the CDF of truncated
exponential distribution function and the KS-1 function works in this space. It is to say that the
KS function measures the relation between the pseudo maximum and the pseudo expected
value of maximum.

We pointed out before that there is another KS function. Our goal was to establish if the
derivative of g in the equation (6) can be written by using same series than in the case of KS-1.
Fortunately we found out that it is possible to write g and g’ using same series, for example by
means of the use of Kummer’s transformation (see Abramowitz and Stegun, 1972).

We start with the counterpart of the expected value given by (5) , which we will write as

‘max

) 1. (14)

If the relation (5) measures the probability of occurrence, equation (14) measures the probability
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of non-occurrence. Because of 1-F,, (m\mmax) is pos1t1ve function when m_, <m_,_, then
E( ) | mmax) >m,.. for all fixed n and 1t iszeroonlyif m_, =m__ .

Solvmg the integral we get (14)

max’

E(M(n)|mm ) My + (M —m ) .[F (m|my, )dm.

If we eliminate the minimum m_, we shall get back the formula (5), but we replace the difference

min

Mypax — My, With the series (11) and integral with the series (12) instead, so we get
k k
1 - (1 - expl:_ﬂ (mmax mmm ):|) 1 > (1 - expl:_ﬂ (mmax mmm ):|)
E(M(n)‘mmax):mmm-’—zgl k _Egl k+n

To each term it holds

(1= e[~ (= m)]) (1= P[0 )]) (1= XP[ = (s =]

k k+n (k+n)

so it implies that

> (1—exp| —f m.—m. k "
(0 |3 2L e 1))

k(k+n)

Here the right side is the Kijko-Sellevoll function 2 (KS-2 or 7). The relation between KS-1
and KS-2 1s

o (1—exp|—B(m,,, —m,,, = (1=exp| = (M —my, '
Zl:( p[ ]E+n ]) kz( p[- e )]) (16)

ans-l (ﬂ(mmax —-m, ))+fKS -2 (ﬂ(mmax — M ))

ﬂ max mm

Using this relationship, we can find the finite sum formula for KS-2

|:(1 TP [_ﬂ(m"‘"‘" ™ i )])n _1:|ﬁ(mmax My ) * k:l (1 — I:_ﬂ(r]:lmx - ):I)

(1=exp[~ (M =y, ) ]) (17)

anS*2 (ﬂ(mmax ™ )) =

The expression (17) can be used to calculate numerical values to the function KS-2. Any way as
we said before (in the case KS-1), it is recommended to use the numerical solution of series
instead of formula (17) because of numerical stability. We could also calculate KS-2 when we
know KS-1 by means of relation (16).
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The function KS-2 gives more «natural way» the solution of m,___the than the function KS-

1 because there is some inverse function such that

f (ﬂ[E(M(n) ‘mmax)_mmin:|) = (M —my,)-

Unfortunately, we cannot say what is the inverse function.
When maximum m___is considered to be infinity, and taking into account KS-1 function for
fixed >0, we have

x (l—exp[—ﬂ(mmax—mmm)])k _N _y! !
nln{rgwkz:; k+n _kzzllk'*‘n_k:l;_k:l;_)w,

so the KS-1 diverges because the harmonic series diverges. Hence the KS-1 is an unbounded
function.

The case of the KS-2 function is different. We need some results of Psi function (Abramowitz
and Stegun, 1972)

0

z
l+z)=— -z ~1,-2,-3,...,
y(1+z) 7+Z‘k(k+z)’ z#-1,-2,-3,
y()=—y, v =—7+Z— n>2,

where 7 is the Euler-Mascheroni constant. When 7 is zero, the KS-2 function is zero. Let’s
assume that 5 > ( 1s fixed then the KS-2 function converges since it is positive term series and

n(l—exp[— (mmax_mmin)])k_ N 1 1
R EE

because the last series converges. Moreover, if nis positive integer (5 >1) then

Zk ko) w(l+n)+y= Z—z (19)

k=1

where H, is called the harmonic number. Thus the KS-2 is a bounded function for any fixed 7.
If we apply the results(18) and (19) to the equation we get
H

E(M(n) | oo) —m = 7 (20)

58 | Cuadernos de Ingenieria. Nueva serie. nam. 9, 2016



Analysis of Gutenberg-Richter b-value anm __Part I: Exact solution of Kijko-Sellevoll estimator of m

max. max

Because of we assumed that the value g is constant, the right side of (20) is constant for any
fixed n. The formula (20) shows a fundamental phenomenon of unbounded distribution function.
No matter how we choose the minimum m_,,, the distance to the expected maximum value is
always the same.

Estimator form

As we showed there are two different solutions for the estimator £ (M(”) | m )

E( ‘ mmax) mmax _%f;fs*l (ﬂ(mmax - mmin ))
_m +;fks 2(ﬂ(’nmax_Wlmin))'

Also our auxiliary function can (6) be written using the KS-1 or KS-2 function

1
B

=m, — E(M(”) |m,_ )+

g(m)=m—£(M,, I m,.) == /" (A(m=-m,,))

L on-m.)

Since they present the same function, they have the same derivative. We get

, 1 0 x5
§(m) = 1 (Bl m)
., exp[—ﬂ(fm_mmin)] anS-l(ﬂ(g_n—mmm)).

1—-exp [—ﬂ(sm -m )]
Now the step of Newton-Raphson method (NRM) has the expression

m, :E(M(n) |mmax)5

n, _E(M(n>|mmax)_%ﬁfs_l(ﬂ(m M)

m _m_g(gnk):m_ [ ]
e+l k g'(gmk) k ) exp —ﬂ(?ﬁk—mm) ks
1—exp [_ﬂ(mk -m_ )] f,, (ﬁ(fmk m i ))
o SeLA —my)]-1] Blon, —E(Myy|m,,)] |

np L (ﬂ(fmk )
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The second term in the difference between brackets, measures the distance to the exact solution
when it is different than one. This step is a Pisarenko estimator (Pisarenko et al., 1996) or a
Tate-Pisarenko estimator (21) (Kijko and Graham, 1998), at ™, = E(M, | m,,. ) (using the
estimator of the maximum observed magnitude 7, )

. 1 l_exp[_ﬁ(m(n)_mmin )J
T o ] 8

1 1
Q) femmemminn
R e S A
&g
3 HRGRSNSEBSRA ARG  pa—
3 i i 3 i ;
4 6 8 10 4 6 8 10
Magnitude Magnitude o
(@) (b)

Figure 1: Function with g () whith different set of parameters.

We show in figure 1 how the function g (in ordinates) varies with magnitude (in abscissas);
it looks like /7. The figure la has been drawn with parameters b=1,m_, =8,m_, =5 and
n=200, and the figure Ibwithb=2,m_, =9.5, m_, =4 and n=200.As we can see in case 1b
the derivative is almost zero and NRM cannot solve it using double-precision arithmetic. In
simulations the NRM can find the solution up to b(m,,, —m,,, ) =7 with exact expected value,
but it is numerically stable up to b(m,, —m,;, )=4.5.

The artificial catalogue can be generated by using inverse function of (3)

m;,=m,, —%log [1—(1—6xp[—/3(mmax —-m, )])ul}, (22)

where u, €U ([0,1]) is uniformly distributed random variable between zero and one. From this
artificial catalogue we choose the maximum observed value ), = max {my,....om,},m eC,,.
In order to get some estimator of the expected value E (M(”) |m, ) ,we could have

3|

=+ o S ) (s~
‘max ‘min ﬂN ~ n (n):k min | |2
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where s, is the mean value of the estimators of m__ . In this case we use a single maximum
event to estimate the expected value of maximum to each catalogue and finally we calculate the
mean of maximums.

On the other hand, we can calculate first the mean value of maximums of all catalogues, such
like

My =25 2 My 23)

and consider the expression(23) Oas the estimator of the expected value of the maxi-
mum E (M, | m,,, ). Thus, we obtain the estimator of m,, using the mean value of maximums

of all catalogues
1 -l 1 N
mmax = mmin +E(f;lKS 2) (ﬁ{ﬁ;m(n)k _mmin:|J'

>

The main problem is that the Kijko-Sellevoll functions £~ and £~ map the interval
[i0s i + H [ Bl S [Myins M | 0O [m,;,,0]. So if the estimator is greater than the value
+H,/Bthen the solution is beyond infinity. For example let b=1, m =8, m =5
andn=1, then the estimator of the maximum observed magnitude must lie in the interval
[5,5.4342]. Due to the maximum magnitude is 8, it is clear that in this case, when n =1, often
there will be the event greater than 5.4342, and consequently, with mean value superior to this
upper limit.

min ‘max

Examples and simulations

In figure 2 we show the problem of simulationfor b=1,m_,_ =8, m_, =5.To each catalogue
size (that is to say » ) it was generated 1000 artificial catalogues. The figure 2b shows how many
of them were accepted i.e. the maximum observed value of catalogue was smaller than
M 1< Moy + H, /B . We calculate the estimator of the maximum for each of the accepted catalo-
gues and afterwards the mean values of those maximums of the catalogues of each size n. The
results are plotted in the figure 2a. In the figure 2¢ we applied the formula (23) . For each size n,
all the 1000 catalogues are used to estimate the expected value of maximum and by using this
estimator (only one value) we calculate the value of the estimator of the maximum . The
figure 2d shows how many attempts were necessary to make to get a mean value of 1000 catalo-
gues, which fulfills lﬁ(n)< m .+ H,/B. We can see from 2¢ and 2d that for catalogues of size
greater than 10, the method behaves quite stable.
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Figure 2: The case 1(8—5) and sample size1000 simulation.

This result is quite expected. In the first case (illustrated by figure 2a) we are modeling the
expected value of the maximum with the mean value of only one event so the variance is quite big.
For small size catalogues we have 55 to 60% of acceptance of the requirements. The situation is
not so much better even though the catalogue size is 200, since still almost 30 % of maximums
are rejected. In the second case (figure 2¢) all the 1000 maximums are used to calculate the
mean value estimator. Its variance decreases as the square root of size of sample, so the variance
comes 30 times smaller than in the first case.

Of course we could have enough big catalogue size that all events are included into the
acceptable interval, so the maximum m_, (unknown) also does; to the number of eventsn,
holdsm_ <m_ +H, /B. Forexampleif m_, =5and b=1,then n is56, 561,5615and 56146 for
the maximum values 7, 8, 9 and10, respectively. With the real catalogues this is not possible
because we should wait years or hundreds years to gather more data.

Another thing what we can do is to increase the minimum value; for example if m
n is,6, 56, 561 and 5615 for the maximum values 7,8,9 and 10, respectively.

Next we consider less number of catalogues. The figure 3 shows the result of considering
m,.. =6, and b =1 and 100 simulated catalogues; the figure 3b shows that we could use a single
catalogue when 7 is more than about 50. Similarly figure 4 displays the case when minimum
value is 7 and only 10 simulated catalogues are taken into account; the figure 4b shows that

=6,then

min
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almost always it is possible to use one single catalogue if the distance to maximum is about one
magnitude unit. Those three figures show that the situation of the single catalogue comes better
as the distance between maximum and minimum comes smaller. Also 2¢, 3¢ and 4c shows that
it is possible to analyze the behavior of KS function in extreme cases like small catalogue sizes
and/or big value of b(m,_ —m,_ ), which can be of extremely importance in zones with few

max
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Figure 3: The case 1 (8 - 6) and sample 100 size simulation.
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Figure 4: The case 1 (8 - 7) and sample sizel0 simulation.

Concluding remarks

In this work we report a method to solve exactly Kijko-Sellevoll formula to calculate
b(m,, —m._, ),considering throughout the text an exact value for b. In fact, both parameters are
closely related when we are dealing with seismic hazard assessment. In a following paper we
shall show that the estimators of Cosentino et al. (1976, 1977), Page (1968) and Aki-Utsu (1965)
are related with the KS-2.

The series resulted to be not only a tool to solve an equation but they also let us to build arich
theory. They give numerically stable method to manage wider range of magnitudes and size of
catalogues. The cost of this is to have more complicated calculus (but not so much slower). The
exact solution of KS estimator does not only mean the solution of the problem without
approximations, besides it makes possible a numerically «exact» solution and the improvement
of the computer performance. At least our work gives an alternative viewpoint to see and analyze
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other similar methods.

We used a fixed /S to all catalogues. In fact this is not realistic since always the S -value must
be estimated to each catalogue and that estimator changes from one catalogue to another. That
could make the method more «soft,» but still there will be failed catalogues. We shall go insight
into this topic in another report (Part IT). As we showed, the way to avoid the problem in the case
of failing catalogues is to put the minimum m_, bigger even the number of the events of the
catalogue will come smaller. As we could see from the figures, when the minimum m_, is closer
to the maximum m_,_, we need less data to get answers. The variance of the estimator of the
maximum comes smaller as the difference m_,_—m_, comes smaller, even we have used fewer

max

events in catalogues. Kijko (2004) showed this fact empirically in his simulations.
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Appendix A

To the readers, who are not familiar with KS estimator, we shall give it shortly (the reader
can find more details in the works of Kijko and Graham (1998) and Kijko (2004)).
First we remark that Cramér’s (1961) approximation

[f(x)}" ~ exp{—n[l—f(x)]}

can be derived (using) as

We see that this approximation comes from the linearization of logarithm and equality holds

when ;=0 or f(x)=1.Thisinequality also shows that Cramér’s approximation overestimate
the original CDE.
Applying Cramér’s approximation to integral (5) we have

A '”j exp{_’{l 1-exp[-B(m-m,, )]ﬂ} Jm

- l_exp [_ﬂ(mmax _mmin)
Mg nexp(—ﬂ(m—mmm )) neXP(—ﬂ(mmax M, ))
_ D4 — dm
j ¢ p{ l—exp(—ﬂ(mmax —mmm))+1—exp(—ﬂ(’"mx Mo ))
nexp(~f(m-m,,))
Xp<{— d
e p{ 1=exp(~f ()|
N { nexp(—,b’(mmax -m_ )) }

11111

"1 1=exp(-B(my —m,y,))
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Setting now

_ neXp(_ﬂ(m_mmin)) = d_é/:
l—exp(—ﬂ(mmax M )) dm

nl (mmax) .

B l_exp(_ﬂ(mmax ~Miin ))
1y (M) = 1y (M ) €XD (=3 (1 = 1,5,))

we can write

) ¢ ¢ exp(=¢) T oexp(=¢)
- —)4e P ) o [ S22y
m(mj.m)exp( g)ﬂg n(,{ ) ¢ . ¢ ¢

_ Mg ! (mmax )

exp(-rm, (m,,)) Bexp(=n, (m,,))

Note that 7, (at)—n, (2) = n for all s . We can approximate the exponential integral by

© _ 2

E(z):jeXp( §)dé,= z 2+alz+a2
A z(z +bz+b,

4 =2334733 4, =0.250621

b =3330657 b, =1.681534

)exp(—z).

KS estimator is given now

E, (ny(m)) - £ (m (»)) 24)
Bexp(—n,(m))

m=m, +

This also can be expressed as

£ (”2 (mw))) ( (m<n>))

_El n
ﬂe"p(‘”z(’"w)) . @)

max

m = m(n) +

Kijko (2004) remarked that this estimator (25) can be used when (m,, -m,, )< 2 and
n>100.
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Appendix B

In this section we discuss the numerical solution of series. The exact solution of the integral
is the «core» of the Newton-Raphson method. For example with S (mm‘,ﬂlx - mmin) =land n =400
the solution (9) comes unstable. This is clear because we showed that the numerator is a tail of
logarithm function(so the numerator is small as is big) and, if at the same time

1-exp(-B(m,, —m,, ))<1 the denominator is very small, yielding equation (9)to instability.

Because of all the series of the Kijko-Sellevoll functions are nonnegative terms series, they
have not a similar numerical instability. Because of {q,} is nonnegative sequence, we could
calculate the series S = ZZO a, as a partial sum§s, = > a,,where n, is some integer such
asS, =S, when n>n,.

The idea sounds quite simple, but the «coin has also other side». The Kijko-Sellevoll function
KS-1 belongs to the family of Lerch transcendent function (or shortly Lerch Phi) (Lerch, 1887;
Erdélyi et al, 1953))

O(z,5,0)= Zw: z

k=0 (k+a)s

and they both (KS-1 and KS-2) are close to logarithm function (we showed that KS-1 is scaled
tail of logarithm function). This means that the convergence of the series is slowly, so we need to
use some acceleration algorithm to solve the value of the series. For example in the extreme case
when b(m,, —m_, )=16 we might need approximately 10” terms to calculate the value using the
direct sum of the series, but with accelerator (discussed below) we need only about 10’ terms
from the series.

The following algorithm we present here, bases on the paper of Cohen et al. (2000) and their
algorithm 2 ;. We tried also the algorithm 2, but we did not get better results than those reached
by the former expression, so we adopted it, even Cohen et al. (2000) recommended method 2,,.
This algorithm presented below can be applied also to other alternative or nonnegative series
different than KS functions. Because of the numerical solution of the integral is so important tool
to the analysis of the exact solution of Kijko-Sellevoll estimator, we give also the open source code
in MATLAB.

Having a series

§=Y(-1) a,

k=0

where a, is well-behaved function which goes to zero as k — o« (sequence of the series), we want
to find coefficients c, , /d, such that the sequence

n-1 c
5= %, 26)
k=0

n

converges quickly to zeroi.e. |S -S| < C™"to some constant C. Cohen et al (2000) showed that
algorithm 2, has convergence factor 7.89 for a large class of sequences {a, } and 17.93for a
small class of sequences. To the algorithm 2, was reported factor 9.56 for alarge class and 14.41

68 | Cuadernos de Ingenieria. Nueva serie. nam. 9, 2016



Analysis of Gutenberg-Richter b-value anm __Part I: Exact solution of Kijko-Sellevoll estimator of m

max. max

for a small class. From our experiments, we can say that our sequences converge approximately
with factor 10 which means a one correct decimal in the sequence (26) for each term in the sum.

The algorithm of Cohen et al. bases on Chebyshev polynomials. It is set 7, (sin* 1) = cos 2nt s0
that P, (x) =7, (1-2x),where T, (x) 1s the ordinary Chebyshev polynomial. Clearly 7, (x) =1. Any way
this can be any arbitrary constant. Now the sequence of polynomials can be given as

n

RS o e

) n+m\ 2m
Using these polynomials, it can be defined a new family of polynomials
P () =S (1) [ ™ (n-2r)" P .
0= S [ o2 2 ()

Here we can see that when ;-2 =0 (case when we have £} the factor of the polynomial is zero,
so P, can be any constant. The suggested sequence of polynomials are defined as

B (x)
An (x) = n! 2n71 :

The normalization factor has been chosen to fulfill 4, (0) =1. Any way it is an arbitrary factor and
we could choose directly 4, (x) = P (x). The algorithm of Cohen et al (2000) is

n

Let 4, ()c):Z:::UbkxA
d=4,(-1);¢,y=-d;5=0
For k =0 up to k =n—1, repeat:
-b, —c

Coksr = 0 =€ 5

Output: s/ d

S=8S+C, A

This algorithm has been written to evaluate the factors «on the fly.» In our case the degree of
the polynomial is fixed because we do not want to use time to recalculate the factors in each time
when the program is called. These factors are universals and their values depend only on the

degree of the polynomial. From the algorithm we can see that the factors are

n

n n
Coo = _E b,|, ¢, = E b, .. :_E

m=0 m=1 m=2

e = (1" Y,
m=k

sod =—c,, . Normalized factors result equal to ¢,, =¢,,/d =, [c,,, which in the case of
n =18, give the next values:

brﬂ

I

>
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Gy = 0.999999999999999245 G, . = 0.999816879032895474 ¢, = 0.580476889354509827
Gy, =—0.999999999998277922 &, , =-0.998595555793887371 G, , = ~0.356402292890562931
oy = 0.999999999610062291 &, = 0.992342806734044361 & = 0.168952372776841569
G, =—0.999999972513434920 ¢, =—0.969204555863406323 ¢, =—0.057152687879365596
s = 0.999999109387382570 &, = 0.906022499505876388 ¢, = 0.012162740075262281
&0 = —0.999983872560606631 &, ,, = 0.777218084969806462 ¢, = —0.001216274007526228

Pay attention that in the MATLAB code the factors are not normalized.
We can also see from the algorithm that the partial sum is now

n—1

1 n—1
§= **zcn.kﬂak = zcn,I:+IaI: :
=

€ =0

The algorithm above is to the alternative series. The nonnegative series can be solved by means
of the trick of Van Wijngaarden (Press et al., 1992)

o

k=0

k=1 m=1

function S = KS (ftype, x,n)

% Input:

% ftype = 1: Kijko-Sellevoll function 1

% 2: Kijko-Sellevoll function 2

% 3: A special series for a variance

% X = beta* (mmax-mmin) (scalar or vector)
% n = number of events (scalar or vector)

% Written by Mika Haarala Orosco, Acrenet Oy

% (21.1.2015 - ver. 14.06.2016)

% Reference:

% Cohen, H., F. Rodriguez Villegas, and D. Zagier (2000). Convergence
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% Cohen, H., F. Rodriguez Villegas, and D. Zagier (2000). Convergence
% acceleration of alternating series, Exper. Math. 9, 3-12.

miter = 10000;

if ~(ftype == 1 || ftype == || ftype == 3), error (‘Ftype must be 1, 2 or 3.7),
end
if ~(all(size(x) == size(n)) || numel (x) == | | numel (n) == 1)

error (‘Inputs must be vectors or scalars.’)

end

S = NaN( max( size(x), size(n) ) );
z=1-exp(-x(:));

n=n(:);

if ftype ==

I = false( size(z) );

I =~(z<0 | I n < 0);

\
if ~isscalar(z)

z = z(I);
end
if ~isscalar (n)

n =n(I);

end

Sn = zeros( size(z) );

So = -1;

if any(z > 0.35)
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for

% Accelerated sum

.437775728963973375

.437775728961498499

.437775728403331487

.437775689444458316

.437774448462769210

.437752541323044337

.437512442082007163

.435756453171741645

.426766402334197056

.393498786821714133

.302657159684823614

.117465298681447728

.834595582738420712

.512426566465161050

.242915620929416540

.082172747478005376

.017487292477909572

.001748729247790957

k = 1l:length(f)

for i = l:miter
switch ftype
case 1
Sn = Sn
case 2
Sn = Sn +
case 3
Sk =

fik= fi

Haarala & Orosco

1;

+ £(k)*(fi

f(k)*(£fi .*

zeros (size(n));

*k;

Cuadernos de Ingenieria. Nueva serie. nim. 9, 2016
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for j = l:length(n)
if fik < 3000
Sk(§) = sum( 1./( n(3)+1 : n(j)+fik-1) );
else
Sk(j) = Hn( n(j), n(j)+fik-1);

end

Sn = Sn + f(k)*(fi * 2*n .* Sk .* z.~(fik + 1)./

((2*n + fik) .* (fik + 1 + n)) );

end
if all(Sn == So), break, end
So = Sn;
fi = £i*2;
end
end

Sn = Sn/1.437775728963974460;

else

[

% Direct sum

for k=l:miter
switch ftype

case 1
Sn = Sn + z.”k ./ (k + n);

case 2
Sn =Sn +n .* z."k ./ (k *(k + n));

case 3
Sk = zeros(size(n));
for j = 1l:length(n)

Sk(j) = sum( 1./( n(3)+1 : n(j)+k=-1) );

end

Sn = Sn + 2*n .* Sk .* z.~(k+1l) ./ ( (2*n + k) .* (k + n) );

end
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if all(Sn == So), break, end

So = Sn;

end

end

S(I) = Sn;

function y = Hn (k1,k2)

o

% This function calculates the subtraction of Harmonic numbers:

% y =sum(l./ (k1+1:k2)) = sum(1l./(1:k2)) — sum(l./(1l:k1l))

% Reference:

% Villarino, M.B. 2008, Ramanujan’s Harmonic Number Expansion
% into Negative Powers, J. Inequal. Pure and Appl. Math., 9(3),
% Art. 89, 12 pp.

euler = 0.57721566490153286;

if k1 <10
D = ceil(10-k1);
m = (k1 +D) * (kI +D+ 1) / 2;
yl = euler + log(2*m)/2 + 1/(12*m) - 1/(120*m"2)...
+ 1/(630*m"3) - 1/(1680*m™4) + 1/(2310*m"5)...
- 191/(360360*m"6) - sum( 1./ (kl1+D:-1:k1+1) );
else
m = k1l * (k1+1) / 2;
yl = euler + log(2*m)/2 + 1/(12*m) - 1/(120*m"2)...

+ 1/(630*m"3) - 1/(1680*m~4) + 1/(2310*m"5) ...
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end

m = k2 * (k2+1) / 2;

y2 = euler + log(2*m)/2 + 1/(12*m) - 1/(120*m"2) ...

+ 1/(630*m"3) - 1/(1680*m™4) + 1/(2310*m"5) ...

- 191/(360360*m"6) ;

y =y2 - yl;
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