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Analysis of Gutenberg-Richter b-value and m___
Part I1: Estimators for b-value

M. Haarala!? L. Orosco'*

Abstract

This report is the second of a series of three which have the main goal to achieve a method to
estimate the parameters b and m_, that are essential when Gutenberg-Richter law is used for
seismic hazard assessment. This paper is devoted to analyze the estimators of b-value.

We give an estimator for the expected value of M|,, and an exact and numerically stable variance
for it; M, represents the ordered values (by size) of magnitude catalogue.

We go on the development of the theory of Kijko-Sellevoll functions, applying them to calculate
generalized b estimators of the seismic catalogue.

Keywords: m__, b-value, Gutenberg-Ritcher distribution function - Kijko Sellevoll estimator
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Resumen

Este articulo es el segundo de una serie de tres, que tienen como objetivo principal obtener un
método para calcular los pardmetros by m_,_ que son fundamentales cuando se utiliza la ley de
Gutenberg — Richter para la estimacion de la peligrosidad sismica. En este trabajo en particu-
lar, nos enfocamos al analisis de estimadores del valor b.

Proponemos un estimador para el valor esperado de M,,, y una expresién exacta y numérica-
mente estable para su varianza; M, representa los valores ordenados de las magnitudes del
catdlogo sismico.

Continuamos con el desarrollo de la teoria de las funciones de Kijko-Sellevoll, aplicindolas al
calculo de estimadores de b generales.

Palabras clave: m_, - b - funcién de distribucién de Gutenberg-Ritcher - estimador de Kijko
Sellevoll

Introduction

We are analyzing the double truncated Gutenberg-Richter distribution function
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s

_ Pexp [_ﬁ (m—m, )}
A (m T exp[—ﬂ (mmax Mgy )}

which has cumulative distribution function (CDF)

0, form<m,,,
F (m‘m ): l—eXP[_ﬂ(M—mmin)] form. <m<m ’ (1)
M max 1 _ eXp [_ﬂ (mmax _ mmin ):| min max
1, form_, <m.

The limit distribution function was given as

. B ~ O, for m < Mg s
M(m‘mmax_oo)_ l_expl:—ﬂ(m—mmin)] formmingma

and

0, form<m

min >

FM (m|mmax :mmin):{l fOrm <m
H min — H

where B=5blog(10), m

mif

. 1s a threshold magnitude and m__ is a maximum possible magnitude.

We could assume that m__e[m,, ,o]. Ifwelet M, M,, ..., M, € [m ,m_ ] beasetof random
variables from the catalogue C, of size N,andwelet M, <M, <---<M,, denote the ordered
values of M,, M,,..., M, so the random variable M, is a maximum in the catalogue C, . We

assume that these random variables are independently and identically distributed (iid) with
CDF of F, (m)given by (1) . Let now m, <m, <---<n,, tobe an ordered sample of magnitu-
des, where ;) is a minimum observed magnitude (m,, < m ) and my, is a maximum observed
magnitude (m,,<m,,, ), havinga CDF

min

0, form<m,,
n
FM(H) (m | mmax) = [F:’l/f (m | mmax ):| for mmin S m< mmax’ (2)
1 form, <m.
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We showed in a previous paper (Haarala and Orosco, 2016) that using a Kijko-Sellevoll function
1 (KS-1)

KN i(l exp[ x])

k+n

or a Kijko-Sellevoll function 2 (KS-2)

()3 el exp[~x])

= k(k+n)

we can write the expected value of the maximum M, of the catalogue as

L ks
E(My 1My )= s = 1557 (B (M =)
i 3)
—m +;j’“ (B~ ).
The relation between KS-1 and KS-2 functions is
f;:KS?l (ﬂ(mmax _mmin )) + f;:KS?Z (ﬂ(mmax - mmin )) = ﬂ(mmax - mmin ) N (4)

Estimator for expected value M,

Suppose that we have a set of iid events m,,...,m, from the catalogue C, . We can divide C,
into N sub-catalogues such that each sub-catalogue C,, (where k =1,..., N ) has one and only one
event. Each of them makes a catalogue of size n =1with maximum observed magnitude 7., .
Because of each catalogue has only one event, 7, = m, . The mean value of maximum observed
values is the unbiased estimator for the expected value |, thus

E(My Imy ) =T T ety 5)
N N
This shows that the mean value of the maximums of the catalogues C;, is an estimator for
the expected value of M, (M, is a minimum but also a maximum since each catalogue C,, has
only one event). In the same way we could create the estimator for sub-cataloguesC,, (size
n =2 ; each sub-catalogue has two and only two events)

. Fotm
(2):1 (2):Nf2) — —
E( ‘ mmax) - [N/ZJ - m(z) s
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where I_J is a floor function (maximum integer value m such thatm < N/2). If the size of
catalogue N is odd, then there is a value which does not belong to any sub-catalogue and we can
choose it randomly.

In general

A M T T M
E(M(n) | mmax) - lN/nJ - m(n) > (6)

where 1<7 <N and m,, is a maximum of the sub-catalogue C,, (1<k< |N/n]), which hasn
and only n events. The estimator in the case is n= N is

N):1

1

E(M(N) ‘ mmax) = = My = My - ()

The mean value from one event is the event itself. This shows also that the maximum observed
value is the unbiased estimator for the expected value of maximum of the catalogue C, . Pisarenko
etal (1996) showed that (7) is the best unbiased estimator and equation(6) yields to (7) when
the sub-catalogue size is the same than catalogue size itself.

In the case that n =1, each sub-catalogue has only one event which is also the maximum so
we will always get the same mean, independently the way we select the events from the catalogue.

Whenp = ¥, we have only one sub-catalogue (which has the same events than the catalogue),
so we will have always the same maximum, indistinctly the order we take the events from
catalogue to conform the sub-catalogue,

Inthe cases 1<n <N the situation is different. For example, if we want to have sub-catalo-
gue N -1, we choose randomly the events from the catalogue C, . It could happen that the sub-
catalogue Cy_,, has or has not the event m,,. If the event belongs to the sub-catalogue, its
estimator for the maximum is m,,, other way it is m,_,. "This situation will present for all n
which is not 1 or N. This is the reason for choosing the events randomly to create the sub-
catalogues. Of course the simulated catalogue is random and it is not necessarily to randomize
the events, but randomizing the selected events we can get different values for the estimator.
Real catalogues can have some systematic changes of the 3 -value (see for example Cao and Gao,
2002), and to avoid the bias, what can happen by rejecting systematically the last terms of the
catalogue, it is better to choose the sub-catalogues randomly.

In a previous paper (Haarala and Orosco, 2016) we used the same technique to find an
estimator for the expected value. There we generated 1000 artificial catalogues of size n. From
each one we took the maximum and calculated the mean of them. In that case we had unbounded
number of total events. In the case of estimator (6) the total number of events is bounded (like it
is in earthquake catalogue) and the number of the maximums in the mean value depends upon

the number of the sub-catalogues, what is possible to get from those limited number of events.
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Estimators for f -value

In the case we consider the sub-catalogues of size n = 1 we can write the expected values (3)
as

in case KS-1 and

Ty == P + 1 (Bl =)

in case KS-2. The KS-1 function can write in the form of a partial sum of » =1 (Haarala and
Orosco, 2016)

1 ﬂ(mmax_ mm) (l exp[ 'B max_mmin):l)

m= Mpax =
ﬂ (l_exp[_ﬂ mmax _mmin ):|)
— mmin _mmax exp[_ﬂ(mmax _mmin ):l + l (8)
l_exp[_ﬂ(mmax _mmin ):| ﬂ
The same result was given also by Hamilton (1968), in the form
}’I_’l — l + mmax exp [_IB mmax ] - mmin eXp [_IB mmin] (9)
ﬂ eXp [_ﬂ mmax ] - exp[_ﬂ mmin ]
and Cosentino etal. (1976; 1977) as
m.. —m_.
M=—atm  + max ____min (ver. 1976)
p X[~ (M =1y, ) ] -1
1 m_ —m._ (10)
+m,, e . (ver. 1977)

) E " 1 exp [ﬂ Miax ~ Minin ):|

All these three (or four) solutions (8)-(10) are equal and evaluated using moment method.
Cosentino et al (1976, 1977) used this solution with variance to calculate the estimators for the
maximumm, and the g -value.

The equation (8) gives also the same estimator for S that was given by Page (1968)

-1

N exp( 61)( mmm))
By =|m— 1_exp( ( )) (11)
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wherem,,is a maximum observed value in catalogue C,, . Page derived his estimator using
maximum likelihood method. We shall call this (11) estimator as a Page’ estimator even the
same is found by Hamilton and Cosentino et al. Alsowe can see from (8) thatwhenm,, — c then
we have Aki-Utsu estimator 5, (’7 - mmin) =1, So this estimator (11) is related with the KS-2
function.

It was natural to wait that the maximum or extreme value model of the order statistic gives
the same estimator than other models since the distribution functions are the same in casen =1.

Owing to the relation between KS-1 and KS-2 given by (4), we can always easily change from

the function to other. So there exists other variation of Page’ estimator

B (M =)~ (1= exp[ =B (M — i, )])
(l—exp [—ﬂ mmax —-m )J)
m,, —m.. exp [— By — M, )] 1
=exp[~B(Mp —1y)] B

m = mmax - IB(mmax _mmin)_

(12)

Thus

BP: M) = My, exp( BP( —m, >>_n—1 3

R

is other form of the Page’ estimator and gives exactly same estimates than Page’ original estimator.
The estimator (12) does not exist as m,_, —> o (it is valid only when m_ <o) so this
estimator(13) is related with the KS-1 function.

We showed before (Haarala and Orosco, 2016) that in unbounded case (mmax = oo) the KS-
1 is unbounded and the KS-2 gives

E(M,, o) =m,, A, (14)
B

where the H, = ZZZI k™' is a harmonic number. Setting , = 1 and using the mean value estimator

we have the Aki-Utsu estimator g,,, (Aki, 1965, and Utsu, 1965)

By =——
m—m
Because in (14) H,/p is a constant, it means that the distance between expected and
minimum values does not depend how we choose the minimum. Always the distance from the
arbitrary minimum to the expected value E(M(”) | 00) is the same, when m__ =o.This explain
the bias what we can see in the Aki-Utsu estimator as m_,, — m___. The mean m does not follow

the minimum similar way than the expected value E(M(n) | oo) .
When the data comes from bounded system, thenitis £ (M, |m_ < o) =i .Using KS-2function
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to estimator we get

1

= )

g

The relation

B = BAUfliKS?2 (B (mmax — Minin )) < ﬂAU (15)

shows that Aki-Utsu estimator overestimate since f < ﬁAU (equality holds only
whenm = o0). This gives also the correction function for the Aki-Utsu estimator

B ~ /@AU f1KS72 (/@AU (ﬁlmax My )) >

where the estimatorm___ is some estimator form

max max *

Similarly, from (15) we can see that the Page’s estimator and Aki-Utsu estimator has a
relation

R AN

Using the estimator m, for E(M(,,) \00), where] <n < N, we have a generalized Aki-Utsu
estimator

/BAS/’:)U =— 3
o=

In the case =1 holds g,, = 3\

The Page’ estimator
Similar way like the generalized Aki-Utsu estimator the Page’ estimator can be solved by
using
gl (ﬁé’]‘)) = _Ig((;ll”) (mmax - m(n) ) + f;:KSil (B((;Il”) (mmax - mmin ))

or

() = B )~ 175 (B ()

Actually these functions are exactly the same since gz( ~é:,))—gl( ~é’,’,)) =0. We call this a
generalized Page’ estimator 4. In the case n=1 holds 3, = 3% .

In Figure 1 we show an example curve of an auxiliary function g with para-
meters b=1, m,, =8, m, =5and n=40.The function g has a parabolic form, so it can solved

with Ridders’ or Newton-Raphson method (Press et al., 1992).
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Figure 1: Example of the auxiliary function §

When making simulations (Haarala and Orosco, 2016) we showed how numerous artificial
catalogues failed because of the condition E(M,,, |m,, )<m.,, +H,/B. When we handle real
seismic catalogues it is first calculated the estimator 4 and then with this estimator it is evaluated
the estimator for the maximum. Due to the KS-2 function gives unique solution of the ﬁ(") -value
for each maximumm,__, it can be said that 3 is a function of m_, (see Appendix A)

:é(n) (mmax )(’7’(”) - mmin) 5 (:é ( Max )(mmax My ))

max

So the Page’ estimator is g, = 3 (my,) (wherem,, is the maximum observed value of catalo-
gue) and the Aki-Utsu estimator 3, = 3 («). These estimators hold the inequality

ﬁé? :ﬁ(”)(m(n))gﬁ(”) (’hmax)sﬂ’\(n) (w):ﬂ’\g;)u

This shows that the f -value measures the distance between the minimum and the infinity
similar way than the expected value of maximum

E(M,,) |m, ) < E(M, |, )< E(M,,]=).

It is well known that when g — £, thenm, — . (Normally this is presented in an opposite
way as m,__—> o then f,, — £.) Alesser known result is a limit when § — 0. Let consider the
KS-2 function

0 (1=exp[ B (my —my,)]) (16)
hnin E k(k+n) ’

(M) I my, )~

™M

Because of

1= xp [_ﬂ(mmax M ):| = ,B (mmax - mm 1 + Z |: ﬂ maxj_ - )]
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the equation (16) results

j-1
E(M(”) ‘mm)_mmin _n (mmax —mmin){l*'z[_ﬂ(mm ‘—mmm)] }

If g — 0 thenwe have

n+l [
mmax = mmin +—| E(M mmax _mmin:|' 17
p (M) [ (17)

For example, in the case 7 =2 this gives My, =1 +3/2(m(2) - m(l)) =My + (m(z) - m(l))/Z .
Since it is a limit as # — 01t does not mean that the maximum is just two times the distance
between minimum and mean. Actually is a minimum distance to the maximum i.e.

m, >m, .+ n_-i-l(%(”) —-m. )

n

Up to this point we can apply these concepts in the case we have a seismic catalogue where
we take the two biggest magnitudes, say for example 8.8 and 9.5, so this is our sub-catalogue of
size p=2.We have then m__ >9.5+(9.5-8.8)/2=9.85. This is a statistical estimator so even
though the formula holds that the maximum is equal or bigger than the result it gives, it could be
smaller. The advantage of this approach is that we do not need to know the g - value to have some
estimation of the maximum and besides, it is easy to calculate.

We could also find the minimum convergence magnitude to the Page’ estimator. The

equation(17) states now that there is solution only if

m <m.+L(m —mA). 18
(n) min n+1 ‘max ‘min ( )

where m_, canbe replaced with its estimator.

Actually there is no numerical solution when the equality holds i.e. when 8 = 0. That is to say
that if the estimator of the expected value 7, is equal or bigger than this limit then the
estimator 4% has no solution. In that case the 4 value will be zero or negative when the inequality
fails so we can define 4% = 0in those cases.

In figure 2 we plotted the Page’ estimator 4% and the Aki-Utsu estimator 3V for the case:
b=1,m,=8,m_ =5andn=200. There is only one artificial catalogue, but the estimators
calculated considering 1 < n < N have been «smoothed» taking 1000 random sets of sub-catalo-
gues and calculating the mean for them. We can see that basically [ﬁ:}.ﬁ),,&’;:: } grows when the size
of sub-catalogue grows. In the very first sub-catalogues the correct £ is not included into the
interval. The figure 2 has been made with Ridders’ method (Press et al, 1992) starting with the
interval [log(10)/10°, 3%, +1og(10)/10].

GAU
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Number of sub-catalogue
Figure 2: Page’ and Aki-Utsu estimators with different sub-catalogue sizes
using Ridders’ method.

The exact variance

Comparing to the calculus of the first moment (Haarala and Orosco, 2016), the calculus of
the variance is much more complicated. Integrating by parts it is

m,

E(MYyImy, )= | m*dEy (mImy,)=m =2 | mF, (m|m,,)dm. (19)

max

Minin Minin

When we applied the functions(1) and (2) the integral can be written

mmax

[ m(1-exp[~B(m=my,)])" dm
P " B (1 —exp [—,3 (M0 =m0 )])n

m,

Because of the integrate function of (1-exp[-8(m-m,,,)])" is

I(l —exp [—,B(m -m, )])” dm = [1 - exp[—ﬁ(m -m, )ﬂ” éffs’l (ﬁ(m -m, )) 20)

(the proof has been given in the Appendix B), integrating again by parts the second moment(19)
yields to
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E(M(zn) [ 70, ) = mzm _Mimaxffm (ﬂ(mmax My ))

s
zm ,,,,, pexp[fﬂ(mfmmm)]
2 1mexp[ B (M —m,y,)

ﬂ L (B(m=my,))dm. 1)

Using notation A, (m) = 8" £ (B(m-m,, )) the second moment is

max ‘max —n

M |: 1 —exp[—ﬂ(m ™ )]

2 —m? _
E(M(n)|mmax)—m 2m A(mmax)+zj l—exp[—ﬂ(mmax—mmi")}

}n A, (m)dm

Mipin

Hence

(b )] =~ ()]

:m2 =2m__ A (mmax)+Afl (mmax)

max max —n

so the variance can be written

Var(M(n) Im, ) = E(M(Zn NEC ) - [E (M )| M )T

_ 2’”]'-“ { l—exp[—ﬁ(m — M, )]

1 _exp[_ﬂ(mmax - mmin )

(22)

]:l A, (m)dm—Af (mmax).

Minin

Since for all m holds A, (m) <A, (m,, ) the variance has an upper limit

max

My 1- exp I:fﬂ (m M ):|
Var (M(n) |m,.. ) <27, (my.) I |:1_ eXp[—ﬁ(’”max — )

Mipin

:':l dm—Ai (mmax) :Ai (mmax )

Next we need to solve the integral in the equation(21). Assuming that » is integer the KS-1
function can be written using finite sum as (see Haarala and Orosco, 2016)

oyl

£ (Bmm,,)) = £
(1 - exp[—ﬂ(m -m_, )})

Now the integral in (21) can be written

2" 1—exp[-B(m-m,,)]
ﬂ Mg 1_expl:_ﬁ(’nmax _mmin)

] [ (ﬂ(m -m, ))dm =
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P o n (1 —exp I:—ﬂ(m — My ):I)k

k

dm

Minin k=1

(1= exp[~B (M =m0 )])’
(P =M1 ) —;Z{i 1J. (1 exp[ —B(m—m,, )])A dm}

k=1

(1 —eXp I:_ﬂ(’nmax M )])”

The integral in the sum is given in (20) . We can write the exact variance as

2 ” 1- . max /' *min ' KS—1
ﬂz (mmnx —m,, )- 22{[ exp[ ﬂ(m m )J} fk S (ﬂ(mmx —m,, ))}

B (1= e[~ (=) ))

2 & [1 exp[ B (M =, )J]k Ay (M)
ok =
(1-exp[~A(my, ~m,,,)])

Var(M(”) [m,. ) =

Without applying series this variance looks like (the proof is given in the Appendix C)

[ B (M — 1)~ H, ] - +2”Z’:”Z’:[l exXp[ =B (M — My )]]A

j=0_k=1 k+])
B (1—exp[—ﬂ My = M )])”
L1 B =11, '
B, 7mmin),z[ exp[ (r: )]

k=1

ﬂ[l —exp[ B (Myy = My )ﬂl

Var( | m.. ) =
(24)

2

Both expressions of the variance (equations(23) and (24 ) are numerically unstable. The
numerically stable form of variance can be written as (proof in Appendix D)

Var( \ m. ) = (25)

B~ 2n+k Sn+j n+k

1 & 2 {i 1 }(l—em[—ﬂ(mm—mmm)])k.

The series can be solved similar way we made with the KS-1 and KS-2 (Haarala and Orosco,
2016). Moreover, the expression (25) has continuous variable n. That means that we could
replacen with T4, where T is a continuous variable of time and 4 is a rate of events in some time
unit (normally it is a year).

The variance(25) can be calculated by means of our MATLAB function (Haarala and Orosco,
2016) as
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Var(M(n) | M ) - ;KS(:S’ﬂ(mmﬂx M )’ n).

In Figure 3 we show an example of the calculus of the variance for the casewhen b =1,m_, =8
and m =5 given different sizes of catalogues. The variance has the shape of the Gamma
function. The maximum value is at n =7 ; from size n = 65 on, the level of variance is less than
the level of variance when the catalogue size is n=1.

0.25

0.1 i i i i i i i i :
0 20 40 60 80 100 120 140 160 180 200
Size of Catalogue

Figure 3: Example curve of the variance.

More about the variance

As we have shown, the first moment is related with the maximum likelihood estimators
(Aki, 1965; Page, 1968) and other moment estimators (Hamilton, 1967; Cosentino et al, 1977), so
it is quite expected that the exact variance will be the same in the casen =1.

In the formula (24) we set n =1, then we have

1 My~ Minin 2 _ _
Var(M(l) [ m. ) = F |1z o [—ﬂ(mmx —_ )] GXPI: ﬂ(mmax me. )] (26)

We can find the variance given by Aki (1965) as m  — oo:
1
Var(M(l) | oo) = P

Generalizing, the variance at m = is
Var(M |oo): ! 2 €L
(n) B K

We can get it starting from (25). The proof is given in the Appendix E. It shows that the variance
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is a bounded function for allm__ (and also for all #) and it is smaller than 1.65/ 4*.

The variance (26) is equal to the variance as it was given by Hamilton (1967)

Var (M(l) [ m,. ) =

2

1 Moy, = My ’
F exp[ﬂ(mmxz— mm,.,)}_exp{_ﬂ(mm My, )}

(actually Hamilton wrote exp|z]—exp[-z]=2sinh[z]) and the variance was given by Cosentino et
al (1976, 1977)

m . t——m

7 } exp[—ﬂ(mmax —-m, )] (ver. 1976)

7 {mmm +%—r71} exp[ B(m, —m,, )| (ver.1977)

where they used the equation (10) to replace the square of brackets in (26).

ﬂZ

Var(M(l) \mmax):i—{ !

We have showed now how variance fits with the models of Hamilton (1967) and Cosentino et
al (1976; 1977). It is natural since the distribution function is the same in the casen =1.If we
write the variance(26) as

Var(M(l) |mmﬂx)=i{ !

(m,, —m, ) }
——4 mex i +C
B 1*eXP[*ﬂ(mmax M )]

where C is some constant, for example C=m-m__. Using the equation of the variance of
Cosentino et al (1976) (10) , we have some function g such that

_ -m,,

g(ﬂ):m_mmﬂx__+ ‘max ‘min .

ﬂ 1- exp I:_ﬂ(mmdx My ):|

m

Now g() =0 because of the equation(10), and g'(8)=Var (M(l) |m,. ) . So the g is maximum
likelihood function L

£(B)= 251 Bm)

_ 1o v ﬂexp[_ﬂ(mk My ):| 27
N op {logﬂ 1 —exp[—,ﬂ(mmax —-m. )] ’ &
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Simulations

In figure 4 we display the mean estimator for the expected value of M, given by (6) . We
generated only one random catalogue C,,, with parameters b=1, m_ =8, m . =5 and n =200
(figure 4a); using this catalogue we take randomly the events from the catalogue C,, into the
sub-catalogues C,., . The means g, and m,,, are fixed. For the sub-catalogue of sizes 1<n <200
we get different paths. The continuous thick line represents the mean value of 1000 samples and
the dashed line is the theoretical expected value. We can see that the mean values are quite close
to the expected values in the range of small catalogue sizes. Actually this is quite expected since
for example for the n-values 1, 2 and 3 the number of sub-catalogues are 200, 100 and 66,
respectively, and the estimator of the expected value is a mean value of the maximums of those
sub-catalogues. The figure 4b is the same than the 4a but it is generated with
parametersb=1,m,  =8,m_ =6 and n=200.

Mag nitude
Mag nitude

0 50 100 150 200 0 50 100 150 200
Size of sub-catalogue Size of sub-catalogue

(@) (b)

Figure 4: The estimator(6) for some catalogue C,,, with different parameters

We generated 10000 catalogues with parameters b=1,m_ =8,m_,=5andn =200 . For those
catalogues we have calculated the mean i, - In the figures 5a, 5b, 5¢ and 5d we show the
histograms of means 7,7, , M, and m,,, respectively.

Also in the figures is pointed out a limitE(M(n) | oo) when we set b =1 (white line). We can
see how close this limit is to the expected value, which is estimated with the mean value. We can

also see that the distribution function is
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Figure 5: Distribution of mean values

normal (as it should be because of the central limit theorem) except in the figure 5d. Because the
probability that the event is outside of interval[m, ,m,_, ]is zero, the probability distribution
function is actually a double truncated normal distribution function. Of course the normalization
factor is about one for all cases except in the case 5d, so we can use the unbounded normal
distribution function in those cases. Moreover, we can see that the variance is much smaller in
case 5a than cases 5b-5d.

In the figure 6a we plotted a mean of the estimatorsm,_ using the same g -value (as we
made in the Part I) that we used to generate the artificial catalogues, and the Page’ estimator g, (i.e.
Page’ estimator is calculated at , =] using maximum observed value my, ). We have got Figure
6a by generating 1000 artificial catalogues with parameters =1, m_, =8,m_,, =5 and 1< 1 <200.
The Figure 6b shows how many catalogues could be used to calculate these mean values.

Because of the Page’ estimator underestimates the $ -value we can use more catalogues in
the calculus but still 25-30% catalogues are rejected, which provokes the bias to the mean value
of the maximums.
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Figure 6: Estimation of the maximum

Concluding remarks

In this work we showed that the Aki and Page’s (Maximum Likelihood) estimators and
Hamilton, Cosentino et al. and Utsu’s (Moment) estimators, can be evaluated by using KS
functions. When the sub-catalogue size is n =1, all the estimators gave the same values when we
use the same parameters. The differences, if any, come from the computation.

In order statistic we can generalize these results to the family of estimators. Due to the
method we are here proposing joins with moment estimator method when » =1, we could solve
the estimators #and m,_ using first and second moments, even though we do not use this
approach in this series of works, but it was made in earlier ones. Any way we showed that the
order statistic carries more information than Moment Estimator Method, because we could
apply the Moment Estimator Method foreach 1<n< N .
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Appendix A

We consider the function

R =

&k (k+n) )

It has a derivative

(anH ), (x)= nCXp[—x]iM

o= (k+n)

nesplon] e )|

We can see that (1 )' (x)>0forall xe[0,00[ , so the function /" (x) is a strictly increasing
function. This means that it is a bijection from [O,oo[ onto [0, Hn[ and it has a unique solution.
Let’s consider now the equation

ﬂ(’ﬁ(,,) - mmin) = fnk&2 (ﬂ(mmax My )) (29)
Assume that there are some ", 3" and Myt s Mo 2 » TESPECtively. If
an&Z (/bA’l(ﬂ) (mmax’l -m. )) _ ansfz (ﬁ;n) (mmax,z -m. ))

then A" ( (")—mmm) ,[7’2")( My = )and B"=p" . Moreover, sincef“’z(x)is the bijection, then
ﬂl(”)( My =My 2()(mmax’2 mm) But now g"=\", so alsom,, =m,__,. That is to say, if
A", A" and mm,1 M, are fromy = £°7 (x)thenm,,  =m, , and ﬂf”)fﬂf") . This makes the
one-to-one mapping between 4" and m__ .

For each g = g o, [ there is an image m,, E]m +(ﬂ+1)( 2y ™ M )/ﬂ,oo[ and for
each we can find. This follows the rea11ty that g— g\ when m,, —>©, and
M= Mo +(n+l)( M,y =My, )/n when g — 0.Thus the equation(29)defines the bijection
mapping between the sets]O,ﬁjQ[and m. +(ﬂ+1)(7ﬁ(,,) —mmin) n,wf.
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Appendix B

Firstly, it is to note that the derivative of the KS-2 function is

< o (1=exp[-p(m-m,,)])

a KS-2 =
aigmf (ﬁ(sm mmm))—”lk:l o k(k+n)
= k(1-exp|-fB(m—m,, -
:nﬁexp[fﬂ(fmfmm;n)]; ( p[k(k(+n) )])
]
ﬁl—exp[—ﬂ(gﬁ_mmm)]fn (B(m=m,,)).

Thus the derivative of the KS-1 function is

1o
Bom™"

So the direct derivative gives

L s (p(m-m,, ))}

%{(1 7exp[fﬂ(m -m )])" 7
=n exp[—ﬂ(mt —m; )](1 - exp[—ﬂ(m —m )])”71 fﬂ'(s’1 (,B(im —-m. ))

+(1-exp[-B(m-m,,)]) {1 A i) 7 (B(m-m,, ))}

1-exp(=f(m-m,, )
= (1 - exp[fﬂ(m -m, )])" ,

and we have

’%f;,“" (Blm=my, )+ (30)
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Appendix C

Because of

[1 —exp [7/5(911 -m, )]]k = [1 —exp |}ﬁ(im -m )HH
- [1 - exp[—ﬁ(sm -m_, )HH exp [—,B(sm —m;, )]

so the integral

m

V”]\'_.xnj[l epr: ﬂm Mo ):I]kd

k+j

i ]“. i [1 —exp[ -B(m-m,, ):HH L uz—/:]_ [1 —exp[ -B(m-m,, )HH Bexp[-B(m—m,,)] o

""""" k+j = k+j

Mg = +J n=(j+1) [1 exp[ B(om—m,, )H dm_%”z":[l—exp[—ﬂ(mm—mmi“):lT’

k+(j+1) k(k+j)

My k=1

where j=0,1,...,n—1,1s applied » times; then it gives for the integral

o " 1- exp[ ,3 mm):l '

E"’J. ;[ J dm
2 2§ P ]
- ﬂ(mmax mm n ﬂz ,Zo; k+j) ’

Now the variance gets the form

n-ln-j |:1 —expl:—ﬂ(mmx ~Min ):I]k
e k(k+7)

ﬂz (1 - expl:—ﬁ My — M ):I)n
(B -y )11, + 255 Lm0 [P )],

_ /01¢ (k+J) Z(m )
B (1-exp[ =B (1, —my, ) ])

2

ﬂz(mmax_mmin) _zﬂ(mmax_ mm H +2

Var(M(n) |m,,. ) = —A; (mmax)
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Appendix D

To get the numerically stable form for the variance, we start from (22)

" 1- exp ﬂ(m mmm)] ' KS-1 _
Var( "m)_ J.L exp[ B(m,. - mm):lj| 5 (ﬂ(m mmm))dm

The integral can be written as

2 l—exp[-B(m-my)] | .
E J. {1 exp[ B(m — mm)]:| Iy (ﬁ(mfmmin))dm

Trmno glomtt

dm

k=1

(1 exp[ﬂ —— n)])”
i To-alptnon. ) o
(1=exp[ =B (M =) ])
S U

2 & 1 K ks
w3 {m(l—exp[—/f(m.m =) ) S (B (s =i ))}
because
2 (I—exp| -B(m—m, ) ’
,B(m My ) = ( l: ](f )]) = foks*l (ﬂ(mmax My ))

) = Z”: (1=exp[ =By =y ) ) |

Jj+m

then the last series in the(31) can be written as
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e (e[ =)} 75 (B =)}
ZZ(I exp[ ﬂ m, — mm)])wl

k+n j+k+n)

(32)

k=1 j=1

Now it is to collect terms containing the same power so we have for some k'=k+ j, k' =2.3,4,...,

i(l exp[ B(m- m)])* _(1_exp[_ﬂ(m_mmi“)])p§n+;’

= —j+n (k +n) B k'+n =

_ (l—exp[—ﬁ(m —my )])A k-

1
k'+n Zn+/
=1

Applying this into (32) and rewriting the index of series we get

k

iii(l exp[—B(m- mmm)])w _2¥ {‘Z‘: 1 }(l—exp[—ﬂ(m—mmm)]) ’ (33)

ﬂz pey k+n J+k+n) 5’ = n+k

so the variance is given by

2 Loy ) (1-exp[ B ~my)])
Var(M(") |mmax)=ﬂ2{zn+1} p— 34)
[t ]
We could also write[ g1 (8(m,,, ~m,,))] similarly as the series(32)

[N 1 £ ksl

P;{m(lfexp[*ﬂ(mmax ~Min )]) 1 (ﬂ(mmux *mmin))}
~ (1 Xp[—B (M —mmm)])w (35)
77;; (n+k)(n+j) '

In the same way as we got(33)above, the (35) gives

[é.ffs’l(ﬁ(mmax—mmm } i{z prv n”)}(l—exp[—ﬁ(mmax—mmm)])k. 50

1
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Applying (36)into (34) , we get for variance the formula

[ ken2y | (mew[ A -ma)])
Var(M(n)Immx) ﬁZ{Z (n+J)( n+k_j)} n+k '

2

We could use this form of variance, but the inner sum produces a small error (bias) for the
results because it is a sum of positive and negative values. To avoid this problem, we can
calculate the pairs(1,k—1),(2,k-2),...,(j.k- /). If k is even, then there is ak/2 term without
pair. We have now

=2 k)
(n+j)(n+k-j) (n+(k7j))(n+k7(k—j)) (n+)(n+k—j)
ken-2(k/2) 0

(n+(k/2))(n+k=(k/2))  (n+(k/2))(n+k~(k/2))

SO we can write

k-1 k-1

Z k+n-2j Z
— I‘l+j n+k—/ — n+/ n+k j) (37)

J J

The factor (37) is not also so good because we need to accelerate it. In the worst case the van
Wijngaarden transformation uses the value & = 2" which means that the factor (37) would need
a huge capacity of computation. The factor in the equation (34) is better, since it can accelerate
its factor as

n+k

z*_zfz we —H,

m=| m=1

>

J=1

where the harmonic number H, can be calculated for example using Ramanujan’s approximation
(Villarino, 2008)

mzn(nJrl)
? (38)
1 1 1
71 2m)+y+—— —
08 (2m)+ 1+ = om  G3omr
! ! 191

— + p—
1680m*  2310m°  360360m°

forn>10.

MATLAB has a harmonic function which bases to the Psi function (Appendix E). It is much
slower than the Ramanujan’s approximation. Only problem with the Ramanujan’s approximation
1s that it is not so good for values less than 10. There is no sense to add more terms to the sum,
because it grows the time of calculus. So when we have some value n <10, n e R, then an easy
trick is to find an integer p such that n'=n+ D e[10,11] when we have H, =H,, - Zj; Y(n+j).

In the Figure 7 we show the absolutely error between the Ramanujan’s approximation and
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the Psi function calculating subtraction d = H, —H,n=1.5,2.5,3.5,...,9999.5 with both method
and calculating the difference of these results. Even the d is calculated with different methods,
the difference between the results of the methods is less than 6x107°.

10715

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n

Figure 7: Error between Psi function method and Ramanujan’s approximation method

To accelerate the factor (37) we need to modify it. It is clear that

1 1 { Lo, 1 }
(n+j)(n+k—j) 2n+k (n+j) (n+k—j)'

We get now

k-1 n k-1 1

Zln+j n+k— j 2n+k|:;n+j Z:n+k j:|
2n &
:2n+kz

Jj=1

n+j

The final variance can be written as

Var(M(n) | mmax) =L S 2n {kl 1 }(l—exp[—ﬂ(mmx —m )])k

B = 2on+k intj n+k

This is a positive term series (numerical stable) and we can accelerate it with the Ramanujan’s
approximation(38).
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Appendix E

Let thevariancetobeat m_ =w

max

> =)= R LA > ?
B Var(M(”) |m,,. ) = (2n+k)(n+k){zn+]}~ 39)

Jj=1
Because (39) is a series of nonnegative terms so it converges absolutely and then every

rearrangement of the series converges (39), and they all converge to the same sum (Rudin, 1987).
We see now that the terms of the series are

el =

L{L+L} k=3
m+3)(n+3) ln+l n+2)’ -
(2n+3)(n+3)

2n { 1 1 1 }
—_ + , k=4
(2n+4)(n+4) n+l n+2 n+3
so the rearrangement of the series(39) gives

" 2n SR 2 < n
z(2n+k)(n+k){zn+j}M;(2n+k+l)(n+k+l)+

k=2 j=1

2 n N
n+24 (2n+k+2)(n+k+2) (40)
2

n
(2n+k+3)(n+k+3)Jr
n

M-

n+3

k=1

8

N
2
n+j = (2n+k+j)(n+k+j)

=
Owing to

1 1 n
n+k+j_2n+k+j_(2n+k+j)(n+k+j)

we can write

X n N 1 X 1

—(2n+k+j)(n+k+j)

n+k+j_k “2n+k+j
1

k=1

- 1

g I
8

1

M

=n+k+j Sdn+k+j S2n+k+j
3 1 . © 1 K 1

Sintk+j F2n+k+j Sh2ntk+j
p— Y 1

itk +
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The series(40) gets now the form

S 2 n S 2 1
Zn+jz(2n+k+j)(n+k+j)_Zn+jk]n+j+k

=1 k=1

—~ (n+j)(n+j+k) 1)

- z
v(l+z)=—y+ — X z#-1,-2,-3,...,
(1+2) _,Z:;J(JH)
n—ll
l//(l):—}/, l//(n)=—}f+z7, n>2,
Jj=1

where 7 1s the Euler-Mascheroni constant, gives

i - k =y+l//(l+k)=il..

1:1](j+k) j=1J

Applying this to (41) we get

& & 1
ﬂzVar(M(n) [ M. :oo):Z |:ij]:J/ZI:J(k+JJ

We will show now by induction that

LIl 1 <!
22{@, D ,JZkr #2)

Let n=1.Then we have
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Let assume now that (42) holds in the case n. Then at n+1 we have

n+l n+l
) 1
ya (n+1)(k+n+1) L - j n+1 = n+1+j }

n+l 1 n 1
7+2 - -
~k {/ (n+1)(n+1+j) /](n+1)(n+1+1)}
S
pa K (n+1)2
n+1 1

i

k=1

This completes the demonstration that

Var(M

where H'”is a harmonic number of order?2.
"To the variance holds

where ¢(s)=)." k™ isaRiemann’s zeta function (Abramowitz and Stegun, 1972). We see that
forall m, e[m, o] and n=1,2,3,... we will have

m )<L 1A 169

Var| M < ~
| FEe e B

so the variance is a bounded function.
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