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Abstract

In this paper, we carried out an analysis of the Gutenberg-Richer
distribution function, which provides a new technique to estimate the
expected values. This estimator, which we referred to as the expected
value curve estimator, offers a relationship between the Order Statistic
and the Statistic of the Maximums. Also, it was observed that the
sample size is an unknown parameter in the real seismic catalogues. In
addition, we demonstrate an algebraic solution for the Gutenberg-
Richter distribution problem, where all the unknown parameters /3,
m_ . and m_, are estimated using four estimators of the expected

max

values. We also discuss the role of the negative b-value.

Keywords: General Gutenberg-Richter distribution function, Kijko-
Sellevoll functions, estimators for the M.y, Mmix and b-value.

Resumen

En este articulo, llevamos a cabo un andlisis de la funcién de distribu-
ci6n de Gutenberg-Richter, lo que resulté en una nueva técnica para
estimar el valor esperado. Este estimador, al que denominamos curva
esperada, da una relacién entre el orden estadistico y el maximo estadis-
tico. Ademads, se observa que la medida de la muestra es un parametro
desconocido en los catalogos sismicos reales. Por otra parte, demostra-
mos una solucién algebraica para el problema de la funcién de distri-
bucién de Gutenberg-Richter, donde todos los parametros [3, m..y
m_, son estimados haciendo uso de cuatro estimadores para los valores
esperados. Por Gltimo, analizamos el papel del valor negativo de b.

Palabras clave: funcion general de distribucién de Gutenberg-Richter,
funciones Kijko-Sellevoll, estimadores de Mmax, Mumin y b.
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1. Introduction

The article series “Analysis of Gutenberg-Richter b-value and m__ ~ has reached to a fourth
part. This part IV (originally intended to be part III of the article series) originated precisely
because in the development of the theory the need arose to consider a negative value for beta,
which was analyzed in part III. Negative b sounds illogical in the field of seismology, but the theory
which contradicts what was established, surprisingly delivers results that are in good agreement
with the real physical world. The first paper further developed the theory in order to include
subcatalogues of different sizes and their expected values (Haarala and Orosco, 2016a). The
classical estimators are mostly from the subcatalogue size 1, but what do we really know about the
generalized estimators for subcatalogue sizes above 1 and their applications?

From the beginning of the series of these papers, the double truncated Gutenberg-Richter
(GR) distribution function was analyzed (Haarala and Orosco, 2016a, 2016b, 2019). The definition
of the GR model was incomplete, so it was necessary to extend to the General Gutenberg-Richter
(GGR) probability density function (PDF) (Haarala, 2021):

Bexp [—ﬁ (m—m,, )}
1—exp|—3(m, —m,, )]
! (1)

f(m): - > fOrn/lmin Srngrnmax /\ﬂzo’
m —m

‘max min

, form, <m<m_ Np3=0,

max]’

0, form¢ [m . ,m
where f = blog(10). The reason for this definition is the discontinuity of the term

Bexp [—ﬂ (m—m,, )]
1—exp[—3(my,, —m,, )|

at f=0. Without this extended definition we must assume £ >0 (or more generally S # 0).
According to Part III (Haarala, 2021), the definition of GGR holds for —o< <o and
—o<m,, <m, <oco. Acumulative distribution function (CDF) of GGR can be written as

0, form<m

l—exp[_ﬂ(m—mmm)] form. <m<m__ AB#0
(m): l_exp[_ﬂ(mmax_mmin)]’ - nax ’ (2)

m- mmin

min ?

- form,, <m<m_ AB=0,

max mmin

1, form>m,_, .
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Analysis of Gutenberg-Richter b-value and muax

These definitions allow handling also negative S-values.

Let M, M,,..., M, €[m,,m,. | be a set of random variables from the catalogue C,, of size N.
Let C, be a subcatalogue of C,, such that C, = C,, for 1<z < N. Now the maximum function
max {MI,MZ,...,Mn} has a CDF (Haarala, 2021)

0, form<m_,,
F, (m) = [FM (m)]n form_ <m<m,__, 3)
1 form  <m.

A Kijko-Sellevoll function 1 (KS-1) is defined as (Haarala and Orosco, 2016a)

fnks-l (x) _ i (1 B exp[—x])k #

pam k+n

and a Kijko-Sellevoll function 2 (KS-2) as (Haarala and Orosco, 2016a)

1572 (x) = igm (5)

k+n

for x > —log (2) We can write the expected value of the maximum M, (at a subcatalogue size n) of
the catalogue as

(6)

We call this the Expected Value Curve (EVC). The relationship between f°~' (x) and £~ (x) is

x= £ () + £ (%) @)

In our work, the number #z € N is an index of the event. In any case, the formulae (4)-(7) are
true when n € R, (Haarala and Orosco, 2019). The EVC is a continuously increasing function. In
this case, when the KS function is continuous it is used as a variable 77 instead of .
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2. Expected Value Curve Estimator

In our previous work (Haarala and Orosco, 2016b), we divided the catalogue C, into the
subcatalogues C, ,, k=1,2,... ,LN/nJ, n=12,..., N, where LJ is a floor function i.e., a maximum
integer value m such that m < N/n. The mean value estimator for the expected value can be
written as

B(M,)=H ——7 ®)

where m € C,, is a maximum observed value in the subcatalogue n:k (n means how many
elements belong to the subcatalogue and & is an index of the subcatalogue, meanwhile the
magnitude m, € C,, can belong to at most one subcatalogue at the same time and there could be
events that do not belong to any subcatalogue). For example, in the case n =11t is E (M )= My =m,
which i1s a mean value of all the magnitudes in catalogue C,, or in the case n =N, we have
E (M )=, =m,, which is a maximum observed value in catalogue C\. When l<n<N
we can choose the sub-catalogues randomly, but in such a way that each event is used at most
once. A problem with this estimator is that there is no guarantee for the order of the estimators:

My <y <o Sy

"To be clear, in the Order Statistic a set of values m,, m, ..., m, is ordered as m, <m, <...<m,,
So, the maximum is m,,,. In our case, all subcatalogues are the same size n, so symbolically
their maximum is 7, which depends on the subcatalogue. The mean is calculated from those
maximums. The symbol i, means that it is necessary to take first the order (here it is the
maximum from the subcatalogue) and then the mean, but it doesn’t suggest that first the mean is
taken, and then it is essential to order the values. The estimator (8) doesn’t order the estimates.

Let’s see an example. Suppose that we have a catalogue C, = {ml,mz,m3,m4 } Taking randomly
the magnitudes, we could get the subcatalogues

It’s worth mentioning that there is only one subcatalogue of size 3, so no event m, is selected

(in this case). The maximum observed values of the subcatalogues are now
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My, = max {m}, My, = max {m, }, Myys = max {m, }, My = max {m, },
My, = max {my,m}, m,, =max{m,m},

Mgy, = max {my,my,m,},

My, =max {my,m,,my,m}

_ _ 1 _ _
My :sz(l):k =m, Mg, =52m(2):k, M) = Mgyps Mgy = Mgy = M)

Any set of randomly selected subcatalogues can provide a different result except at size 1 and N.
If we repeat this process 1000 or 100000 times, we could see that it converges to some mean, an
expected value.

Let’s consider another example. Suppose that m,=k, k=1,2,3,4. The sets of size n=2 are
{1,2}, {1,3}, {2,3}, {1,4}, {2,4}, {3,4}. In the case of n =3, the set are {1,2,3}, {1,2,4}, {1,3,4},
{2,3,4} and n = 4 there is only {1,2,3,4}. There is no set {2,2}, because our example has only an event
with value 2. Now the weighted means are

nﬁ(]):l.l+l.2+l.3+l.4:21’
4 4 4 4 2
m(2)=1'2+3~3+3~4:31,

6 6 6 3
m :l-3+§-4:3§,
B g7 4 4
r71(4)=4.

In general terms, suppose that we have ordered events m, < m, <--- <m,. Given that the order
of events doesn’t matter for the maximum function, we can choose

m i % ) [N]U ©)

sets of size n. Let p be an integer such that n < p < N. Now the observed maxima can have values
My S oo Smy, S Sy If we now have the event m, that is the largest member of the set of
size p, so there are p —1 elements, from which we can choose the rest of the n —1 members of the

subset of size n with maximum observed value m,)- Thus, we have
p—1
n—1
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sets of size n, where the maximum observed value is - The EVC estimator, as we call it, is now

)
. v n-1 NY'&(p-1 _
E(M,)=>Y] "N m(p):(n] Z[i_ljm@):m@. (10)

p=n

Appendix A provides a method to compute (10) with MATLAB in a quite powerful way.
For example, it is easy to find the estimators in the casesn=1andn = N:

. _ N 2L (p—1 1 _
E(Ml):mo):[l] Z[ 0 ]mm:;Z Mip) =

p=1

A _ N p—1
E(MN)_m(N)_[N] Z[N_l]m<p>_”’<zv>'

p=N

The first of the above expressions is a classical mean estimator, and the second one is a maximum,
also known as the Pisarenko estimator (Pisarenko et al., 1996; Haarala and Orosco, 2016a).

"Table 1 shows the example of the factors in cases N =3 and N =4.

Table 1. Example of the EVC estimator

n N=3 N=4

_ 1 1 1 _ 1 1 1
! m =30 T3 T30 Moy =30 T Mt Me T e

_ 1 _ 1
2 M) =3t 3 M) M) =M T Mo T M
M =m T

3 )~ ") My =3 M) T My,
4 May = M)
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3. Some Properties of the EVC Estimator

We can see from the recurrence formula (Abramowitz et al., 1972) that
Y (p-1 n—1 n N -1
z = + 44

o\ n—1 n—1 n-1 n—1

n—1 n N-1 N N

= + e+ = = .
0 1 N-n N-—n n
Now, it is possible to find the next properties for the EVC estimator (10):

i) Ifm,=--=m,,then

_ NY' & (p-1 _
m(n):muv)[nj pz(n_J =My = My - (11)

Hence, 11_1(" ==y
i) Ifmy, =-=my_ <m =--=m,,, then
_ NY' [ p-1 N p-1
= +
o e E
(MY (k-1 NY (k-1
| » I L I il B L)
~ NY'(k-1
=M, n (’”(k) "k 1))
>0
Because
C(NY'(k=1)_ k-1k-2  k-n
n n) N N-1 N+l-n
_ k-1k-2  k-n  k—(n+1) N+l-(n+1)
N N-1 N+l-nN+1-(n+1) k—(n+1)
(N (k=D\N+1-(n+1)
- 1) (n+l) k—(n+1)
N ' (k-1
<_
n+1 n+l
where n < k < N. Therefore ”_1(,1)< R 11_1(,(71) < n_1(k) == 11_1(N).
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iif) Suppose, that m, <---<m,_\ <m, =--=m,,n< k < N.The binomial factors can be written

Ny N! _ n+l N! _n+l( N
n _n!(N—n)!_N—n(n+1)!(N—n—1)!_N—n n+l1

as

and
[ p-1 j: (p—l)!
)2 T )]
n (p-1)!

where n < p < N. Now, we can write

N
p—1
{m(,,) +p_zn;rl[n_ljm(p) }
+
n+1

N YNoon p-1
) e £ |

m, = [
N

N
n
n

YN N-n n p-1
(12)

{n+l o) p;1n+l p—n[(n+1)—1jm(p)}

N-n n p-1 ul p-1

-1

{n+1 " pz,,‘il[n+l p—n j((n+l)—l]m(") +pzn;]((n+l)—l]m(}’)}

N-n n p-1 _
{n+1 " ,,Z,,;][n+1 p—n_lJK(n+l)—1]m(F’)}+m(n+l)

=My then using the property (1) we get

'
=
(1)
()
()

If it is set My =) =

-1
m N N—n+ZN: N-n n 1 p-1 " m
M+l n+l  Si\ n+l p—-n (n+1)-1 ) =)

which shows that

> S, 2! 13
T+l +p_n+1[n+1 p—n J(n+l)—1 ' (13)
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Since
- N+1
P AL RN pﬁw,
n+l p—n n+l
_ -1
N "> P >0, n+l<p<N
n+1 (n+1)-1

and by setting

we can separate the positive and negative factors of (13) as
p—1

N-n (N-non
+ -1 s
n+l S\ n+l p—n (n+1)—1

o= 2= i)

0<

n+l p—n

p=q+1

Hence, the equation (13) can write as
N-n <~ (N-non | r-1 ) & | N-n_n_ r-1
(n+1)-1) n+l p—n)(n+1)-1)

n+l S\ n+l p—n il

"To complete the proof, it holds for the term in (12)

N-n YN(N-n n p-1
m(n)—i-z -1 ™,
n+1 pe\ n+1 p—n (n+1)—1 ’
N-n &L (N-n n p-1 i N-n n p-1
= ™) — -1 my = 2 | lm———— m,)
n+l " S n+l p-n (n+l)—1 P s n+l p—n (n+1)—1 p
(a) _ q _ -1 N _ -1
< N n. N-n n 1 p m, - Z 1_N n o n p M.,
n+l S\ n+l p-n (n+1)-1)W | & n+l p—n )\ (n+1)=1)[
(6)
<0.
The strict inequality
N—nm S (N-n n p-1 m < N—n+z”: N-n n 1 p-1 m
nel W S ntl pn (n+1)-1)"" "1 pe1 - A n+l p—n (n+1)-1) @’
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=== myy,, implies the strict inequality at ().

in the case of m(n)S 2 < Mgy < Mgy ==y,

The same way, the strict inequality

i 1_N—n n p-1 ” <ﬁ: 1_N_n n p-1 .
p=q+1 n+l p—n )\ (n+1)-1 (@) p=qtl n+l p—n)\(n+1)-1 (2

whenn<-.-- < Mgy S0 S <My = oo =, implies the strict inequality at (a).

In this case we have

N-n & (N-n n p-1 N-n (N-n n p-1

+ —-1 < + -1 m ..
n+1 " p;I[n+l p—n j[(n+1)—1]m(") {n+1 p;( n+l p—n j[(n+1)—lﬂ (a)
And if ¢ = k-1, then (b) has strict inequality. Thus, the equation (12) shows that My < T,
when My <1, and itholds for allm -< n_1( )< rﬁ( W= n_1( N)since nisarbitraryindex, n < k.

These three properties demonstrate that the EVC estimator is ordered. Moreover, if we have only
two events such as m,_,, <m,,, then all estimates are strictly increasing with indices n, n +1,..., k,

and itism_, <m,_ (Haarala 2021) If we have three maximum events like m,, =My gy = My,
with their estimates Moy = M1y = My the curve that passes through these t ree points 1s a
straight line that is parallel to the x axes. This means that the estimates are then m,;, = m,, = m,

and f# = -0 (Haarala, 2021; Haarala and Vermeulen, 2022). The theory shows that we should not
get =t Haarala, 2021) and the EVC estimator cannot get the estimates that result in f = o,
but unfortunately, f# = —0 is possible. This can happen in the real data set because of the binning
of the magnitudes (the magnitudes are rounded to the first decimal).

4. Connection to the Order Statistics

The maximum function creates the order. Let 1<i < N, i € N, be the index of the random
variable M, and let 1, be a set of a size n of indices I, = {i,i,,...,i, } without regarding the order,
where 1<i <N and i, #i, for all p#q. Let 3, be a set containing all combination sets of n
indices from the N distinct indices. Note: The index 7, can belong to set /, only once, but it can
belong to different sets of /, with different » values.

We can now set
M, =mi n(max{Ml}).
1,€3

iel,
For example, the set /, has only one index then

M MN),

P ERRED)

= mln(max{M }): min (M,,M

(1) L3, iel

because it is 3, ={{1},{2},....{N}} and max (M,) = M.
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We can write I. € 3 as an index set, which gives the minimum
n n Y

M(n) = ;lni{l’(max{M[}) =mag({Ml.}.

R iel, iel,

Now it follows

M, = f{;?;X{Mf} < rlgf"l‘{Mz} = M-
This holds because if M(m) < M(H) then

max{Mt.} Smax{M,.} =M

. . *
iel, iel,

<M =max{M,.},

(n) iellt

(n+1)

where I, < I,. Now it can be found out that an index set /, gives smaller maximum than 7. It is
a contradiction for the definition of 1;. Because M 0 is the smallest value of all, we find the order

My <My <M,

The distribution function of Order Statistics can be shown as follows:

i A AmM< M)

(14)

Thefirstequality follows because M|, < m, thus, M, < m (s M., ),M(n) <M, <m S M(M))
and soon until M, <---< M, <m. The second equation follows because I, N3, =, n = m.
This means that the ordered random variables are independent. The third equality comes from the
binomial probability because the maximum doesn’t depend on the order, so all the combinations
that give the maximum have to be considered.

The distribution (14) is an expression that states how the CDF is presented for the Order
Statistics. The result (14) can be rewritten as follows:
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—k

:i y (-1)" EJZJ(N; k][F(m)]”"

k=n

IS

> it ooy -3

It is necessary to take a common factor [F (x)]" in each case, when the terms of the double sum

can be found
0:  [F)]" Z [ j[No kj
pot: [F(x)]”‘Z_(—l)W[]ZJ(N;k]

k=n

- N (N-n) —(N-n N\(N-k
p=N-n: [F@]™" 3 (- )(kj[N—nj'

p

n

Thus, by changing the order of summations it results in

=SB G e "
Fen e (s rer

Now it holds

(]Zj[jzz:l;] B k!(]ifvik)! (NE];[);(];)ik)! B q!(]ifviq)! k!(qqik)! B [Z](Zj

e (an g )

Using a check for binomial coefficients (Abramowitz et al., 1972), the sum can result in

Hence,
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Thus, the equation (15) can be completed by writing

. (N](Zj][nm)]q.

q

The CDF of the n™ Order Statistic could be given by

=20 () 27, (), (16)

p p)\n-1

It provides an easy way to calculate the CDF of the n™ Order Statistic for the GGR distribution.
It is essential to replace the F}, ( ) by (3).
The estimator for the EVC (10) gives an idea of what to set

a3 (o

Applying (16) gives

() 22 (D)
(2 £ 2 (RN e
Similar to (15), the double sumlr;iation can change the order. Thus,
) £ 2o (R e
2 e (ZERNG e

Cuadernos de Ingenieria, Volumen 15, 2024: 1-43 13
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The next step is to find a recurrence formula:

o e e e e

_n p! q!
q n!(p—n)!p!(q—p)!

<))
N4 o

Knowing that ¢ 2 p 2 n, it can apply the recurrence formula (19) n —1 times which gives
p-1\(a-1)_ a=1 a=2_a~(n-1) {g=n) (p—nY(a=n) _(a-T)(a-n
n—1)\ p—1 n-1 n-2 1 (g=n)t {0 N\p-n n-1\p-n)
"To solve the summation on the (18) it can be written as
4 p-1)g-1 qg-1\g q—n
A v
p=n p n p=n p—n
n q_l & k| g—n
=(-1 -1 .
g
If g > n, then by using the Binomial Coefficient Check (Abramowitz et al., 1972) it is

f(—l)k (‘1 ; "j = (-1)"" (61 - nj ey qfl(_l)(q_n_l)_k [q;n}

k=0 q—n k=0

g v o )

or to be rewritten as

and if g = n, then
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This shows how all other terms vanish except the n™ term. So,

(2] gl () e

_ (]: j (-1 (-1 IZ]FM,,(M)
= F,, (m).

In order to complete the analysis, let’s consider the distribution of the n™ Order Static:
ul n+q N q -1
RORYE b AT

g \n-1
W= )

4= =g n—=1){g-1
SRS A ) X
= Fy, (m)

It has been shown that (16) is an inverse of (17) and vice versa. Moreover,

sefon, )= frtm 2 S0 (V) 27 )

-3 () 2 e, () am
e () e 2 S (e

where X M(")) can be, for example, a p™ central moment X M(n)) = (M(n) —E(M(n))gp orap™
moment X ( M )= M (’; ) Using expected value (6) and variance (Haarala and Orosco, 2016b)
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Var(Mn):in 2 {i 1 }(I—GXp[—ﬂ(mmx—mmm)])’ 21

B = 2n+k |“Sntj n+k

it is possible to calculate the expected value for n™ Order Static by

oS (2)2 e

p=n p n—1
and the variance by using the formula

Var(M(n)) = E[(M(,,) —E(M(”) ))2

. b 23)
=p§N;(—1)w N 1;:11 [Var(Mp)+2[E(Mp)—E(M())}ImdFMp (m)

Table 2 offers a practical example about the Order Statistic. In this case, it is set the 8 = log(10),
m, =8, m_ =5 N =5 and the sample size is 100000. The expected value and the variance for the
Statistic of Maximums are calculated by (6) and (21), respectively. Similarly, the expected value
and the variance for the Order Statistic are calculated by (22) and (23), respectively. Using the
random generator for the GGR distributed random numbers (Haarala and Vermeulen, 2022) we

can estimate the expected values for the Order Statistic as follows:

min

C = sort( GRdistribution(log(10),8,5,5,100000) );
E = mean(C,2)
V =var(C,[],2)
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Table 2. Example of the Order Statistic

n | E(M,) E(M,,) E(m,,) var(M,) | Var(M,) | var(M,,))

1 5,4313 5,0868 5,0867 0,1796 0,0075 0,0075

2 35,6459 5,1951 5,1950 0,2203 0,0192 0,0192

3 5,7883 5,3395 5,3395 0,2359 0,0400 0,0402

4 5,8946 5,5556 5,5561 0,2431 0,0860 0,0864

5 5,9794 5,9794 5,9798 0,2464 0,2464 0,2451
5. An Ideal Catalogue

We define an Ideal Catalogue to be a catalogue {mf m;,,m;} of size N such as the EVC
estimator (10) with these events has a property ﬁ(n) =F (M (n)) for all n. Using the factors of (10)

we have
1 1 1)
m! N N N | [EWM)
mi| o L No1] | ()| i
my N N E(M,)
0 - 0 1

The inverse matrix becomes unstable when N > 10.
As it was shown in the section above, the Order Statistic is an inverse for the Statistic of

Maximums. So, the ideal catalogue is same as the Order Statistic. We can write for the case of the
Ideal Catalogue as

o n—1

However, the factors grow rapidly. For example, the factor matrix in the case N =15 looks like
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15 -105 455 -1365 3003 -5005 6435 -6435 5005 -3003 1365 -455 105 -15 1

0 105 -910 4095 -12012 25025 -38610 45045 -40040 27027 -13650 5005  -1260 195 -14

0 0 455 -4095 18018 -50050 96525 -135135 140140 -108108 61425 -25025 6930 -1170 91

0 0 0 1365 -12012 50050 -128700 225225 -280280 252252 -163800 75075 -23100 4290 -364

0 0 0 0 3003 -25025 96525 -225225 350350 -378378 286650 -150150 51975 -10725 1001
m 0 0 0 0 0 5005 -38610 135135 -280280 378378 -343980 210210 -83160 19305 -2002 E(M])
m, 0 0 0 0 0 0 6435  -45045 140140 -252252 286650 -210210 97020 -25740 3003 | E(M,)
P=| 0 0 0 0 0 0 0 6435 -40040 108108 -163800 150150 -83160 25740 -3432 :
m, 0 0 0 0 0 0 0 0 5005 -27027 61425 -75075 51975 -19305 3003 E(MM)
my 0 0 0 0 0 0 0 0 0 3003 -13650 25025 -23100 10725 -2002 || £(M,s)

0 0 0 0 0 0 0 0 0 0 1365 -5005 6930  -4290 1001

0 0 0 0 0 0 0 0 0 0 0 455 -1260 1170 -364

0 0 0 0 0 0 0 0 0 0 0 0 105 -195 91

0 0 0 0 0 0 0 0 0 0 0 0 0 15 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Since the expected values are approximations, the double precision arithmetic becomes
unstable even if we could compute the exact values for the factors. This could work until N =30
even the sum of all factors in each row is 1. This is not hard to show by induction. If n = N, then

ger (e (-

Suppose that

Then

zor ()

Il
M=

(e ) )

er e,

oo o)

b e
e erger ()

= [n]ilj(x::j_(_l)m (n]i,lj =t
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Analysis of Gutenberg-Richter b-value and muax

The third technique (which uses a random generator) can be applied to estimate the expected

values for the Order Statistic

= mean (sort ( GRdistribution (B, m,,, m.., N, lOOO) ) ;1 2);

Thus, the conclusion is

The error

calculated by the different methods (24)-(26) for the ideal catalogue of size 10 (8= log(10), m,
and m_ =35) is presented in Table 3.

82

o\ n—1

(26)

ax

Table 3. Error between the EVC estimators of the ideal catalogue and the theoretical expected value

=8

n Inverse Matrix Method (24) Order Statistic Method (25) Random Generator Method (26)
1 0,1776E —14 0,2780E —12 0,0027
2 0 0,1474E 12 0,0019
3 0 0,0258E—12 0,0021
4 0 0,0142E 12 0,0031
5 0,0888E — 14 0,0098E —12 0,0045
6 0 0,0044E —12 0,0064
7 0 0,0018E—12 0,0085
8 0,0888E — 14 0,0009E —12 0,0109
9 0 0 0,0133
10 0 0 0,0159
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Figure 1. Error between the EVC estimator and the real expected value

The ideal catalogue is only a theoretical tool. For example, by using the Random Generator
Method that can be seen in Figure 1 that in the case of f=1log(10), m =8 and m_ =5 the EVC
estimator (see Appendix A) is numerically stable and appears to be unbiased up toN =10000.

Table 4 shows a numerical example of the bias introduced by the sample size. In the first
column, we have the ideal catalogue of size 6 (B=1og(10), m, =8 and m_, =5). As it was pointed
out above, the second column calculated by the EVC estimator (10) is equal to the theoretical
expected values. It is important to note that it is not necessary to know all the events, only the
N —n+1largest ones. For example, we need the ideal events m,, m,, m,, m; to calculate the M2y
but not the event m, .

Even though, the smallest value is not used, it is crucial to know the total number of events
(N =6) to obtain unbiased estimates. Let’s assume that there exists a threshold that prevents
us from recording the events less than 5,10. In this case, the sample size N is 5 instead of 6.
These estimates for the maximum are presented in the fourth column. Similarly, if the threshold
is 5,20, the last column shows the estimates calculated by N = 4. The table is also presented in
Figure 2.
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Table 4. Bias of the expected-value-curve estimator

n Ideal catalogue All events 5 biggest events 4 biggest events
1 5,0723 5.4313

2 5.1590 5.6459 5.5031

3 5.2674 5.7883 5.7173 5.5891

4 54117 5.8946 5.8593 5.8027

5 5.6276 5.9794 5.9653 5.9442

6 6.0497 6.0497 6.0497 6.0497

In earlier work (Haarala 2021) we presented the estimators for the m
formula

by using the recurrence

max

KS-1 _ _ 15 (ﬂ(mmax_ Myin )) 1
fn (ﬁ(””lm‘lx m. i, )) = 1— CXPI:—,B(mmax— " ):| ; .

In Appendix B it was proved that

fe (n-2)E(M, ))-2(n-DE(M, ,)+nE(M,)
nn =10 =2)(E* (M, )+ B* (M, )+ E(M, . )(E(M,) - E(M,)) - E(M, ) (E(M,.)+ £(M,)))
(n=V)EM, ) pnE(M,)~1]-nE(M, ) f(n-1)E(M,,)-1]

Br(n-D[E(M,,)-2E(M, )+ E(M,)]+] ’
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Figure 2. Estimated EVC values with different sample size

This method needs 4 points, lgf(Mn_3 ),l:?(Mn_2 ),E(M

for the /3, m,. and m

min?

n-1

) and E (M n) to solve the estimates
which means that it is overdetermined. Thus, this method cannot provide

solutions in cases where it is still possible to solve the parameters with fewer points. Finding out
the method to solve the parameters at the general points £ (M " ),E (M " ),E M, )is beyond the

scope of this paper.

Table 5 shows the estimates for the /3, m_.and m_, . It can be seen that B has a slight bias
with N =5 and N = 4, but it gives the right answer for N = 6, where the error is in the 10™ decimal

(log(10) = 2,30258509299404).

A

Table 5. Estimates for the 3, /1, and 1,
N | n B M, P,
4 2,302585093001670 8,0000 5,0000
6 5 2,302585093001670 8,0000 5,0000
6 2,302585093001670 8,0000 5,0000
5 2,302590307555657 7,9880 5,0666
’ 6 2,302590307555657 7,9884 5,0669
4 6 2,302604754044397 7,9710 5,1454
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This example shows how the unbiased estimators have biased results because of the bias of
the sample size. Moreover, this shows that the EVC estimator is really related to the expected value
curve (6) because the estimates of the EVC parameters with the correct sample size are exactly the
same with the parameters of the theoretical model. This is not a surprise given the way in which
the EVC estimator was derived above. It also explains why the expected value doesn’t change even
if the catalogue size N increases, while the magnitudes of the Ideal Catalogue (or in other words
the expected values of the n™ order statistic), decrease at the same time (Table 6).

Table 6. Bias of the expected-value-curve estimator

n |Ideal catalogue| E (M,)  |ldeal catalogue E (M,)  |ldeal catalogue E (M,)
1 5,1445 54313 5,1084 54313 5,0868 54313
2 5,3611 5,6459 5,2529 5,6459 5,1951 5,6459
3 5,7883 5,7883 5,4692 5,7883 5,3395 5,7883
4 5,8946 5,8946 5,5556 5,8946
5 5,9794 5,9794

The analysis above leads to three main observations. The distribution model (1) is,
mathematically speaking, a double truncated exponential distribution. Given that it is not possible
to measure all events, there is a threshold called corner magnitude m® € |m,, ,m,, [. Corner
magnitude is a magnitude limit from which the catalogue is complete upwards. It means that
the catalogue has missing events less than the corner magnitude m‘. The definition of the EVC
estimator (10) and the examples above show that the estimates for the EVC can be computed for
any threshold m" e [m"q,mmax . For the four-point method above, it could be m® <m" < My )
The only requirement is that we must know the real catalogue size, with missing or unknown
events. Furthermore, it was shown above that it is possible to find unbiased estimates for all
parameters of the double truncated exponential distribution if we know the sample size.

The Gutenberg-Richter law (Ishimoto, Iida, 1939; Gutenberg, Richter, 1944) was presented as

log,y N(m)=a—bm, (27)
where N (m) is a number of events with magnitudes greater than or equal to m. The magnitude

threshold m_,, is set so that all events are greater than or equal to m,_;, and there are no events with
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magnitudes less than this threshold, rewriting it (27) as
log,, N(m)=a—b(m—m,,),

W€ can s€e€

log,y N(m,;,)=a.

So, the unknown sample size must be an estimate of the number of events in the catalogue:

N=N(m,,)=10"
"This shows that the a plays a role of the unknown sample size.

The second observation tells us that (1) is not just the double truncated exponential distribution
when we talk about the Gutenberg-Richter law (27). Instead of the three parameters, we should
estimate four parameters: 8, m_, ,m_ and N 2N (mc) to get unbiased estimators. Thus, when
naming (1) as the GGR distribution, it must be considered more than only a double truncated
exponential distribution where both parameters, a and b of the Gutenberg-Richter law play a
role in the distribution. It is to see the GGR distribution as a subfamily of the double truncated
exponential distribution.

The third observation is that we should never use the Aki-Utsu estimator B [ Bl AUJ and
the Page’s estimator B [— ﬂGPJ because the unknown sample size is bigger than the observed
sample size N > N (m and these estimators are defined at n =1 which has missing events below
the threshold m* (see Figure 2). (Note: Definitions of these estimators can be found in Haarala
and Orosco (2016b)).

6. The Expected Value for the EVC Estimator

As noted above, the expected value for the Statistic of Maximums can be written using the 7™

Order Statistic such as

E(M,)=[mdF,(m)
Frin S0 (o o

pp_ljfm dFM(y)(m)

- ZN:(ZJI n-1

77N /N
B
|
—_
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Because of that we can present the EVC estimator (10) as
-1
_ YNINY (p-1
M, = M .,
=20 [25)

E(Mn):i(Nj_l (p_le(M(p)):E(Mn)-

o\ 711 n—1

it follows

Therefore, the EVC estimator is an unbiased estimator as it was shown above in an experimental
way.
7. More Theoretical Observations

In Part I (Haarala and Orosco, 2016a), it was mentioned that f(m,, —m,, ) can be associated

with a pseudo distribution function like a pseudo maximum y, . This is also known as normalized
maximum. We can see the expected value (6) as

BB (M =)= 157 (B =)= 47 (1) @)

or, if we define X(ﬂ) = ,B(M(q) —-m, ),

E(X )= 157 (Hw)-

This normalized maximum y,  defines a class of distribution functions. If M ()l is from the
distribution function £, (m, ( st — Monin1 ) andif M, , is from the distribution function by (m 6 a2 — Misin.2 ),
they have the same expected values

E(ﬂl (M(,,),l T Miiny )) = E(ﬂz (M(q),z T M ))

for all 77 if and only if (mmax’1 mml) ,Bz( Moy = mm,Z)' This means that these distribution
functions belong to the same class. Figure 3 illustrates this situation.
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Figure 2. Comparison between expected values

Subplot (a) is drawn with b=1, m_, =5, m =8 when y, =1log (10)(8—5) =3 10g(10) and
subplot (b) is drawn with b=0.5, m_, =4, m_ =10 when y, = O.SIOg(IO)(IO— 4) =3 log(lO).
We can see that the curves are similar and the only difference between them is the scale of the
y-axis. Subplot (c) is drawn with b=1, m_, =7, m,, =8 when z,,, =1log(10)(8—-7)=1log(10)
meanwhile subplot (d) with b=0.5, m_, =6, m_ =8 when y, =0.5 log(lO)(8—6) =log(10). We
can see the same equality between subplot (¢) and (d) as we saw between subplots (a) and (b).

max

The red curve marks the unbounded expected values. That is to say that in all cases, those
unbounded curves have the pseudo maximum y,,,. = S (00 -m_, ) =0,

These examples show how the shape of the curve depends only on the normalized maximum
X @nd the parameters f, m,, and m_;, just scale that curves. The same can be seen from (28)
where the expected curve is defined in the normalized form, and it only depends on the normalized
maximum y, . giving the linear transformation between the normalized distribution function and
the final distribution function.

We call 5 as a shape factor defined as

5= Zmax/log(lo) = b(mmax_mmin )
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8. Convergence of the KS-2 Function

The expected value of (6) using the series (5) can be written as

(1 - exp[— (M =M1 )])k

lw
—>m +—
M + 52 i

This series is the same as (writing z = l—exp[—ﬂ (mmaX — My )] )

o k

Z%:_log(l_z) = ﬂ(mmax _mmin)'

k=1

Thus, the expected value is asymptotically
E(M(so) ) =My - (2‘9)

"This is natural since the expected maximum magnitude of all possible magnitudes is a maximum
possible magnitude. It means that the estimator i, — m_, when n — co. Using the Pisarenko
estimator E(M ) = m, to estimate 771, , it makes the result robust. The Pisarenko estimator is an
unbiased estimator even with the bias of the catalogue size N . Moreover, the convergence fixes the
bias on the estimate 1 produced by the £ and m_,, values.

Let’s assume that we know the EVC E (M, ) for the shape factor 5 =1(8—5). It is assumed also
that we know the minimum: m_; =5. The real b =1 is perturbed as it is shown in Figure 4. The
estimate for the maximum 7, could be solved by using an iterative solution as it was presented in
Part I in the Analysis of Gutenberg-Richter b-value and m,__ (Haarala and Orosco, 2016a). Figure 4
shows how the estimate of the maximum converges towards the maximum with all b-values.
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Figure 4. Convergence of the estimator 7 __

9. The Gutenberg-Richter Distribution in the Discrete (binned) Case

Up to now, the analysis has focused on the continuous GR distribution. In practical applications,
the events are grouped because of the limitations of the measurement and bounded computing. As
a consequence, all values from the interval m € [x—0.05,x+0.05 [ are replaced by the value x (or
rounded to x). It leads to the phenomenon contrary to the theoretical results

It was shown above that the EVC estimator is ordered: My < yfor all n=1,.
Mathematically speaking, this is a monotonically increasing sequence “} The next theorem
states the convergence of this monotone sequence (Rudin, 1987):

Theorem. Suppose {m(”)} is monotonic. Then {m(”)} converges if and only if it is bounded.

In the case of earthquakes, the maximum of the magnitudes must be bounded because
otherwise we would have, for example, an earthquake with infinite energy or endless moving
of the fault. This means that the EVC estimator converges to some limit m,, . Since the
Pisarenko estimator is a maximum event in the catalogue, thus E (M )= My We conclude that
E(My)=m My => My = =E(M ), just like it was demonstrated above. This means that there
exists some N =1,2,... suc tilat so that m,, —m,, <&, &>0. Using (6) and the Pisarenko
estimator, we can write
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max

1 _
OB =y (5, )<

Let’s consider #=11log(10), m,;, =4.95, m_, =8.05and & =0.1, we find N > 4415 that m,,
and m,,5) could belong to the same bin. Thus, it is expected that m,, 5 =8.0. If we have three
subcatalogues of size N >4415, it is expected that Miasys = Miaars)2 = Manis)s = 8.0 indicating
B =- even we should not reach the minus infinity in the theoretical sense (Haarala, 2021).
Because of the limitations of the measurement and bounded computing (given the discretization
of the continuous data to the bins of equal size) we can even find a negative infinity value for b in
the real catalogues.

10. Examples
a) Can the b-value entail a minus infinity in real case?

Let’s consider the volume bounded by the coordinates S28.3°, S26.9°, W70.5°, W65.0° and
depths between 0 km and 30 km. The superficial area of this volume is marked with a red line in

Figure 5.

Table 7. Subcatalogue for the events on figure 5. (Data: ISC, 2023)

# | EventID Time Latitude |Longitude |Depth|Auth.| M | Type |Auth.
1 1884411 2001/06/13 04:10:47.19 -27,1775 -66,4524 13,3 ISC 5,0 MW [GCMT
2 | 624494650 | 2022/06/21 08:10:00.80 -28,1100 -69,1100 22,5 [GCMT| 5,1 MW | GCMT
3 [ 602709234 | 2013/03/19 11:41:55.94 -27,8545 -69,4714 9.8 ISC 5,1 MW SIA
4 | 603231530 [ 2013/07/13 21:36:12.60 -26,9684 -66,8994 15,7 ISC 52 MW [GCMT
5 14240651 | 2010/01/19 17:28:15.45 -27,5764 -65,8767 27,0 ISC 52 MW | GCMT
6 1734914 2000/04/30 05:31:26.23 -27,0000 -65,9970 248 ISC 5,2 MW | GCMT
7 687573 1978/01/13 01:21:00.84 -27,5747 -65,7771 23,4 ISC 52 mb | NEIS

The subcatalogue was created by using primarily location information from the ISC
(International Seismological Centre). If location data had not been available from the ISC, then it
would have been taken from the author who has published the magnitude data. The magnitude
has been selected in the order in which the first is accepted at the moment magnitude of GCMT
(The Global CMT Project, Columbia University), if still not available, then another author who
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has published the moment magnitude (here only SJA — INPRES, Instituto Nacional de Prevencion
Sismica) would have been selected. If there had been no reported moment magnitude, then the
magnitude would have been taken from the NEIS or NEIC catalogue of the USGS (United States
Geological Survey). The events m > 5.0 of this volume are listed in Table 7 above as a subcatalogue.

Even though Table 7 shows only the seven largest magnitudes of the volume, it can be seen
that four of them are maximums and equivalent. Mathematically speaking, it is enough to give a
realistic example of the possible catalogue to show that the b-value can reach minus infinity in the
real case.

L

.~ ¥

{u

M<4.0 * 40<M=<5.0 * 50=<M

Figure 5. An example catalogue. (Data: ISC, 2023)

The volume (red area in Figure 5) may represent a seismogenic zone. The dashed black line
presents a subvolume bounded by the coordinates S27.6°, S26.9°, W67.0°, W65.7° and depths
between 0 km and 30 km. Events number 2 and 3 do not belong to this smaller subvolume, but
both zones get b = —oo. If we select any other zone within the red area, which includes the black
one, b = —oo is reached, which demonstrates that there are many chances to face negative infinity
case.

Previous analysis (Haarala, 2021) stated that if the expected values are on the same horizontal
line, then we have either m,, = m,_,, or f = too. Knowing how the EV curve behaves depending on
B (Haarala and Vermeulen, 2022), the EVC can be expressed in the case of f=—0 (m_, <m,_ ) as
mmin s ’7 = 05

m 0<np<ow

f(n)={

‘max >
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It’s impossible to say anything about the minimum in this case, so the estimates can be set as
My =M = My, thus

m:

The majority of the magnitudes in Table 7 are the moment magnitude type, except one, which is
body magnitude. Considering the original data from the bulletin of ISC (ISC, 2023), event number
7 had three reported magnitudes; without taking into account the homogenization of magnitude
units, in our case the report of NEIS was adopted, and with that we got the negative b-value.

Magnitude Err Nsta Author OrigID
mb 5.2 NEIS 1521873
MSZ 42 NEIS 1521873
mb 5.3 0.3 16 ISC 1521874

If we had chosen the magnitude of ISC, there would have been no negative infinity for the
b-value because there would have been only a single maximum value 5.3. This gives an idea that
the set of maximums {5.2, 52,52, 5.2} could be replaced by the set. {5.15, 5.20, 5.20, 5.25} in the
calculus to avoid the problem of negative infinity, because it should not happen as the theory states
(Haarala, 2021); but it happens because of the measurements and the limitations of the calculus. It
is important to remember that those highest events in which ones fall into the interval [5. 15,5 .25[
are not exactly 5.2. They are rounded.

b) Estimates of the algebraic solution

Let’s consider the border area between Argentina and Bolivia bounded by the coordinates
S24.0°, S21.0°, W66.0°, W62.5° and depths between 0 km and 30 km. The events are shown in
Figure 6. Table 8 lists these events with magnitude 4.0 or greater using the same criteria concerning
the type than the events in Table 7.
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Figure 6. Argentinian and Bolivian border region (Data: ISC, 2023)
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Table 8. Events on the Argentinian and Bolivian border region (Data: ISC, 2023)

# | EventID Time Latitude | Longitude [ Depth | Auth. | M | Type | Auth.
1 604743683 2013/04/11 11:02:33,00 -23,7410 -64,3860 10,0 SJIA 4,0 MW SJA
2 607673504 2015/07/24 12:41:13,49 -23,7336 -64,6132 10,0 ISC 4,0 MW SJA
3 617459834 2018/11/12 10:32:48,44 -23,4134 -63,9947 10,0 ISC 4,0 MW SJIA
4 | 604744066 2013/04/27 22:33:28,20 -23,7200 -65,6690 10,0 SJA 41 | MW SJA
5 | 608060256 2015/11/30 09:01:38,44 -23,5572 -64,6042 10,0 ISC 41 | MW SJA
6 7315744 2004/03/22 06:23:25,13 -23,2619 -64,4878 16,5 ISC 42 mb NEIC
7 | 601863935 2012/09/21 02:15:28,54 -23,7099 -64,1569 1,4 ISC 42 | MW SJA
8 612529869 2018/08/03 05:57:16,64 -23,2049 -64,1438 11,0 ISC 4,2 MW SJIA
9 618140070 2020/04/22 16:27:30,76 -23,6492 -64,6217 26,9 ISC 4,2 MW SIA
10| 620928864 2021/07/19 09:44:48,94 -23,2892 -64,5205 10,0 ISC 4,2 MW SIA
11 621828931 2022/01/30 02:44:53,20 -23,2710 -65,0840 6,0 SJA 4,2 MW SJIA
12 602643 1982/03/21 08:44:25,84 -22,4044 -63,6757 10,0 ISC 43 mb NEIS
13| 601867657 2012/11/01 12:02:00,22 -23,9076 -65,0637 10,0 ISC 43 | MW SJA
14 | 619648365 2021/01/13  06:27:10,97 -23,7105 -64,7381 10,0 ISC 43 | MW SJA
15| 601837043 2010/12/31 18:24:24,40 -23,9130 -64,4880 22,9 SJA 44 | MW SJA
16 | 601848169 2011/10/06 12:13:55,20 -22,7220 -63,7250 10,0 SJA 4,4 MW SJIA
17| 602780765 2013/04/11 09:15:47,18 -23,6778 -64,6408 10,0 ISC 4,4 MW SJIA
18| 617810119 2020/03/22 01:13:22,67 -23,6965 -64,5594 13,1 ISC 4,5 MW SJIA
19| 620573088 2021/06/29 00:31:54,00 -23,8850 -64,3886 6,6 ISC 4,5 MW SJA
20 | 625301594 2022/11/23 18:37:02,65 -23,6309 -64,6525 10,0 NEIC | 45 mb NEIC
21| 608097349 2015/09/08 03:03:14,60 22,7134 -64,3089 10,0 ISC 4,6 mb NEIC
22 1037023 1997/07/15 03:53:55,58 -23,4401 -63,7044 10,0 ISC 4,7 mb NEIC
23| 621841713 2022/02/03 09:35:46,30 -23,1850 -65,1400 15,0 SJA 47 | MW SJA
241 600130085 2011/12/31 16:15:09,72 -23,3688 -64,3268 16,0 ISC 4,8 MW SJIA
25| 608458285 2013/09/22 13:39:22,47 -21,8602 -63,7415 10,0 ISC 4,8 MW SJA
26 | 617577801 2020/02/27 01:25:25,92 -23,6753 -64,6374 10,0 ISC 4,8 MW GCMT
27| 618119367 2020/04/16 18:17:43,84 -23,0682 -63,4630 10,0 ISC 4,8 MW SJA
28 | 608079043 2015/12/05 02:10:00,26 -23,5076 -64,6859 12,5 ISC 49 | MW SJA
29 851194 1966/01/24 21:07:41,37 -23,5270 -64,1652 15,3 ISC 5,0 mb USCGS
30 | 614973348 2019/02/23 16:34:08,55 -21,6448 -63,1862 10,0 ISC 50 | MW | GCMT
31 1893856 2001/06/25 09:57:01,22 21,7348 -64,3052 23,0 ISC 5,1 mb NEIC
32 7487935 2005/03/31 21:52:30,92 -23,5342 -64,3427 9,5 ISC 51 | MW | GCMT
33| 614911565 2019/02/17 13:22:07,56 -23,4580 -64,7543 9,7 ISC 5,1 MW GCMT
34| 611829837 2016/05/22 12:20:42,58 -22,3693 -64,3226 10,0 ISC 52 MW GCMT
35 200649 1993/10/02 00:06:03,69 -23,9763 -64,4469 259 ISC 53 MW GCMT
36 549589 1984/07/24 22:23:45,55 -23,0753 -64,2785 10,0 ISC 53 mb NEIS
37 1658685 1999/12/30 14:49:56,98 -23,8449 -64,8851 14,2 ISC 53 | MW | GCMT
38| 13917676 2009/11/06 08:49:53,72 -23,4561 -64,4546 16,0 ISC 54 | MW | GCMT
39 745417 1974/07/01 16:51:53,59 -22,1352 -64,6732 14,7 ISC 5,5 mb NEIS
40 | 608060607 2015/11/29 18:56:22,17 23,4521 -64,5633 10,0 ISC 55 | MW | GCMT
41 7315685 2004/03/22  04:22:57,71 -23,0611 -64,4999 14,6 ISC 57 | MW GCMT
42| 619561623 2020/11/29 16:40:43,66 -23,2530 -65,0546 6,7 ISC 57 | MW | GCMT
43| 608059513 2015/11/29 18:52:51,42 -23,4755 -64,7173 21,6 ISC 5,8 MW GCMT
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Figure 7. Ordered events and their EV estimates
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Figure 8. Estimates for the catalogue of the table 8
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Figure 7 shows the ordered events (blue dots) and their EVC estimates (red dots). The red line
is drawn to show why f decreases (Figure 8) and even gets negative values (min( B, ) =-0.0427).
The estimates of the maximum magnitude (earthquake) are quite stable to get, taking values of
min (m,, (n))=5.84, max (m,,(n))=5.91 and ,,,(n) = 5.89.

The negative £ indicates that the events inside the dotted ellipsoid of Figure 7 are stronger
than what was expected.

Given that the data was truncated at 4 and n was set n = 4,...,43, the solution tried to estimate
m,;. as 4. The variation of £ and m_, indicates the variation of the magnitude of the events around
the theoretical model of the events (red line in Figure 8).

11. Conclusion

We have demonstrated that there exists an algebraic solution to estimate £, m,__ and m,_,.
Since it is based on the four EVC estimators, there exists a possibility that the solution will fail
sometimes. In order to avoid this problem, the solution should use only three estimators.

Another important result was to demonstrate that the negative £ is not only of theoretical
interest, but is necessary to consider its existence in the real catalogues when we use the generalized
estimators (not within the framework of classical theory), including the negative infinity for the 5 ;
the reason for this is the binned continuous events.

The theory we have developed over time and from where the foundations of this work come
from, is thought to be worthy for hazard assessment studies, especially in seismic zones with little
history. The analysis also shows the rich information that the real event catalogue provides to
access reliable parameters in probabilistic seismic hazard studies.

With the idea of getting rid of the need to “guess” necessary values to apply to existing models,
the development of the theory led to generalize the GR distribution function to consider the non-
positive cases of 5.
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Appendix A

We gave in formula (10) the expected value

We shouldn’t use the ready functions for the binomial coefficient. Quite simply, we can get a form
to use in the numerical calculus

(p—1)!
;—)""(m
n!(N—n)!

1:[ k

17
P

These factors can be represented as

-0 -0 -0 -0
nlipl nlipz nlipa nlim
_ p n,—0 p, n,—0 p; n,—0 p, n,—0
m
(m) 0 n 1 p—0p,—1 n 1 p-0p—1 n, 1 p,—0p,—1 (#1)
m 2 2
M, _ p, n,—0 n,—1 p; n,—0n,—1 pyn,—0n,—1 M)
7(713) 0 0 n}ipz_opa_lpz_z n}ip470p471p472 m(pz)
) pyn,—0n—1n—2 p,n—0n,—1n,-2 ",
ny Py
_ 1p —2p —
0 0 0 n4ip4 0p,—1p,—2p,—3
pyn,—0n,—1n—-2n,-3
. T . .
Assuming thatD=(m pl,...,mm) 1s a column array of the magnitudes and let the z to be an

index array of the size of the array D. The MATLAB code can be written as

D = sort(D(:));

n =n(:)";

Mn = zeros (numel(n),1);
factor = ones(size(n))/n(end);
ind = true(SLZe(factor)),
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Mn (1) n(l) * (factor * D);
ind (1) = false;

for k = 2:numel (n)

factor (ind) = factor(ind) .* ((n(ind)-k+1)/ (n(end)-k+1));
Mn (k) = n(k) * (factor(ind) * D(ind));
ind (k) false;

end

Let’s consider another idea:

n—1 P
L o(p_k) = nkH+1k
— _ =p-n
m, = Z_ P my = Z_N— )
p=n P (N —k) p=n P H k
k=0 k=N-n+1
)4 N—n N—n
k k k
_ N n k:lpi[)1+l k=p+1 _ u n k=p—n+1
- Z; N N—n (2 P (»)
5T KT K e BT k
k=N-n+1 k=p+1 k=p+1

N
ul nkl_IH(k n) N1
_Z 5 M) :Z_

p=n p k p=n p k=p+1
kl_[p+l
Note that Hk Ve 1 = 1. The matrix of the factors is now
1, _ﬂ][l_ﬂ][l_ﬂ] 1, _ﬂ][l ﬂ] 1 fim) 1,
_ pl n4 n3 nZ p2 n4 n3 p3 n4 p4
m
o 0 an[ mpm) 1 m]
m
(m) — pz I’l4 n3 p3 n4 p4 (p2)
m m
" 0 0 Lo fiom) L |
(ny) bP; n, Py m,
1
0 0 0 —n,
Py
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As above, the MATLAB code can be written as

D = sort(D(:));

n =n((:);

factor = n;

ind = true(size (factor));

Mn = factor * (D(end)/n(end));
ind(end) = false;

for k = l:numel (n)-1

factor (ind) = factor(ind) .* (l1-n(ind)/n(end-k+1));
Mn (ind) Mn (ind) + factor(ind) * (D (end-k)/n (end-k));
ind(end-k) = false;

end

In any case, this version is faster than the first idea. The difference in evaluation time between
these codes comes out, when #n > 10000.
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Appendix B
Following Part I (Haarala and Orosco, 2016a), it is

B, = - T[ I—CXP[_,B(m—mmm)}]J” dm.

1_ exp[_ﬂ(mmax _mmin )

”me

Integrating

2 (glopnm ) ~(-oel - )

—(1 —exp [—ﬂ(m -m_ )])']71 S
itis

mmax

j (1 - exp[—ﬂ(m —-m, )})77 dm = —ﬁ(l —exp [_ﬂ(mmax T My )])”

mmax

+ J. (l—exp[—ﬁ(m -m )J)nil dm.

mmm

After dividing by (1 —exp [— B(my —m,, )])n, it yields

MT( 1—exp[—ﬁ(m—mmm)] ]H ldm
I[ 1=exp[ A (m—my,)] J” A Gt B ) I
7| i

1- CXp [_ﬂ (mmax M ) P

l—exp[—ﬁ(mmax —mminﬂ s

Minin

Replacing

mT,\ [ 1- exp[—ﬂ(m T My ):I

1- CXp [_ﬂ(mmax M )

J dm=m,, —E(M,)

in equation (30) and multiplying by £, we get the recurrence formula

ﬂ(mmax —E(M,H )) 1
p(m—~E(M,))= exp] f(m —m)] 7
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"This is a general proof of the recurrence formula presented in Part III (Haarala, 2021) and it
holds forall Be R, neR,.
The case of n=1,2,... can be written as

/3( o — E(M,_ )) =1-exp| —B(Myp— M)
B 7E(M”))+% DL (M= 1) ]

ﬂ(mma E(MzZ))
PR

=1—exp [—ﬁ(mmax_ Mein ):I :

Solving the equation

(M ~E(M,) _ (my~E(M,.,)
(1 —E(Mn))ﬁ (o —E(M, )+

ﬂ(n—l)

it gives the final result for the m___ as

:(n—l)E(MH)[ﬂnE(M, —1]—nE _ [ﬂ n-1)E(M,)-1]
Bn(n—-1)[E(M,_,)-2E(M M,)]+1 '

A similar way to remove f3, it is to set

i  Bn(n-1)[EM,,)E(M,)-E*(M ]+nE (M, ) (n-1)E(M,_,)
e pn(n-1)[E(M, ,)-2E(M M,)]+1

i _B(n-1)(n-2) )E( H)E(MH)—EZ(MH)]+(n—1) (M, ,)-(n-2)E(M,.,)
" B(n=1)(n-2)[E(M,)-2E(M, )+ E(M,)]+]

where it can be found

1
(n-D(E(M,.)-E(M,,))’

B=-

B=

(n-2)E(M,_,)-2(n-DE(M,,)+nE(M,_) ‘
n(n—1)(n- 2)(152 (M, ,)+E* (M, )+E(M, ) (E(M,)-E(M,.))-E(M,,)(E(M,,)+ E(Mn)))

The root f3, is not a correct solution because it is always positive, since E(M,_)>E(M,_,) and
nz4.
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In the end, the minimum can be written as

ﬂ(mmax - E(Mnfl))
ﬁ(mmax - E(Mn)) +

1
=m, +—log|1-

min

The algebraic solution is valid when

Pln ~E(M,.)) _
Pl ~E(M,)+-

In case nB(E(M,)-E(M,_))=1,itis m,, =—o.

< np(E(M,)-E(M,. )<L
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