PAVIMENTOS DE MEZCLA ASFÁLTICA MODIFICADOS CON TiO2 Y SU APORTE A LA SUSTENTABILIDAD URBANA
Abstract
Urban growth has increased the use of asphalt pavements, which contribute to the formation of urban heat islands (UHIs) due to their low albedo. This study evaluates titanium dioxide (TiO2)-modified asphalt mixtures to improve urban sustainability. A MAC F10 mixture with 2% dry-mixed TiO2 was used, comparing it with a conventional mixture. Opto-thermal properties (albedo and emissivity) were measured experimentally, and thermal behavior was simulated with PLM-Term software under historical climatic conditions in the cities of La Plata and Salta (Argentina). The results demonstrated that the TiO2-based mixture presented a higher albedo (0,17 vs. 0,10) and higher emissivity (0,97 vs. 0,91), resulting in a significant reduction in the total energy transferred to the environment. It is concluded that the incorporation of TiO2 constitutes an effective technology to mitigate UCI, reduce energy consumption in refrigeration and contribute to environmental sustainability.Downloads
Download data is not yet available.
References
Akbari, H., Cartalis, C., Kolokotsa, D., Muscio, A., Pisello, A. L., Rossi, F., Santamouris, M., Synnef, A., Wong, N. H., & Zinzi, M. (2015). LOCAL CLIMATE CHANGE AND URBAN HEAT ISLAND MITIGATION TECHNIQUES – THE STATE OF THE ART. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 22(1), 1-16. https://doi.org/10.3846/13923730.2015.1111934
Akbari, H., Levinson, R., & Stern, S. (2008). Procedure for measuring the solar reflectance of flat or curved roofing assemblies. Solar Energy, 82(7), 648-655. https://doi.org/10.1016/j.solener.2008.01.001
Asaeda, T., Ca, V. T., & Wake, A. (1996). Heat storage of pavement and its effect on the lower atmosphere. Atmospheric Environment, 30(3), 413-427. https://doi.org/10.1016/1352-2310(94)00140-5
ASTM. (2006). Test Method for Measuring Solar Reflectance of Horizontal and Low-Sloped Surfaces in the Field. ASTM International. https://doi.org/10.1520/E1918-06
ASTM. (2014). Practice for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers. ASTM International. https://doi.org/10.1520/E1933-14
Ayar, P., Ruhi, A., Baibordy, A., Asadi Azadgoleh, M., Mohammadi, M. M., & Abdipour, S. V. (2024). Toward sustainable roads: A critical review on nano-TiO2 application in asphalt pavement. Innovative Infrastructure Solutions, 9(5), 148. https://doi.org/10.1007/s41062-024-01450-4
Cabrera, P., Botasso, G., & Castro-Luna, A. M. (2025). Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI). DYNA, 92(237), 80-88. https://doi.org/10.15446/dyna.v92n237.119489
Chen, J., Zhou, Z., Wu, J., Hou, S., & Liu, M. (2019). Field and laboratory measurement of albedo and heat transfer for pavement materials. Construction and Building Materials, 202, 46-57. https://doi.org/10.1016/j.conbuildmat.2019.01.028
Correa, E. N., Flores Larsen, S., Lesino, G. (2003). ISLA DE CALOR URBANA: EFECTO DE LOS PAVIMENTOS. INFORME DE AVANCE. Avances en Energías Renovables y Medio Ambiente, 7 (2), 11-25.
DNV. (2017). PLIEGO DE ESPECIFICACIONES TÉCNICAS GENERALES PARA MICROAGLOMERADOS ASFÁLTICOS EN CALIENTE Y SEMICALIENTE DEL TIPO f.
Fernández-Gómez, W. D., Rondón Quintana, H. A., & Reyes-Lizcano, F. (2013). A review of asphalt and asphalt mixture aging. Ingeniería e Investigación, 33(1), 5-12. https://doi.org/10.15446/ing.investig.v33n1.37659
Qin, Y., & Hiller, J. E. (2014). Understanding pavement-surface energy balance and its implications on cool pavement development. Energy and Buildings, 85, 389-399. https://doi.org/10.1016/j.enbuild.2014.09.076
Sanjuán, M. Á., Morales, Á., & Zaragoza, A. (2021). Effect of Precast Concrete Pavement Albedo on the Climate Change Mitigation in Spain. Sustainability, 13(20), 11448. https://doi.org/10.3390/su132011448
Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224-240. https://doi.org/10.1016/j.rser.2013.05.047
Xu, L., Wang, J., Xiao, F., EI-Badawy, S., & Awed, A. (2021). Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses. Applied Energy, 281, 116077. https://doi.org/10.1016/j.apenergy.2020.116077
Xu, X., Swei, O., Xu, L., Schlosser, C. A., Gregory, J., & Kirchain, R. (2020). Quantifying Location-Specific Impacts of Pavement Albedo on Radiative Forcing Using an Analytical Approach. Environmental Science & Technology, 54(4), 2411-2421. https://doi.org/10.1021/acs.est.9b04556
Zeng, W., Wu, S., Pang, L., Chen, H., Hu, J., Sun, Y., & Chen, Z. (2018). Research on Ultra Violet (UV) aging depth of asphalts. Construction and Building Materials, 160, 620-627. https://doi.org/10.1016/j.conbuildmat.2017.11.047
Zhong, Y. (2021). Research on Thermal Reflection and Cooling Curing Coating Material of Nano Modified Emulsified Asphalt for Urban Road Pavement. E3S Web of Conferences, 261, 02051. https://doi.org/10.1051/e3sconf/202126102051
Akbari, H., Levinson, R., & Stern, S. (2008). Procedure for measuring the solar reflectance of flat or curved roofing assemblies. Solar Energy, 82(7), 648-655. https://doi.org/10.1016/j.solener.2008.01.001
Asaeda, T., Ca, V. T., & Wake, A. (1996). Heat storage of pavement and its effect on the lower atmosphere. Atmospheric Environment, 30(3), 413-427. https://doi.org/10.1016/1352-2310(94)00140-5
ASTM. (2006). Test Method for Measuring Solar Reflectance of Horizontal and Low-Sloped Surfaces in the Field. ASTM International. https://doi.org/10.1520/E1918-06
ASTM. (2014). Practice for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers. ASTM International. https://doi.org/10.1520/E1933-14
Ayar, P., Ruhi, A., Baibordy, A., Asadi Azadgoleh, M., Mohammadi, M. M., & Abdipour, S. V. (2024). Toward sustainable roads: A critical review on nano-TiO2 application in asphalt pavement. Innovative Infrastructure Solutions, 9(5), 148. https://doi.org/10.1007/s41062-024-01450-4
Cabrera, P., Botasso, G., & Castro-Luna, A. M. (2025). Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI). DYNA, 92(237), 80-88. https://doi.org/10.15446/dyna.v92n237.119489
Chen, J., Zhou, Z., Wu, J., Hou, S., & Liu, M. (2019). Field and laboratory measurement of albedo and heat transfer for pavement materials. Construction and Building Materials, 202, 46-57. https://doi.org/10.1016/j.conbuildmat.2019.01.028
Correa, E. N., Flores Larsen, S., Lesino, G. (2003). ISLA DE CALOR URBANA: EFECTO DE LOS PAVIMENTOS. INFORME DE AVANCE. Avances en Energías Renovables y Medio Ambiente, 7 (2), 11-25.
DNV. (2017). PLIEGO DE ESPECIFICACIONES TÉCNICAS GENERALES PARA MICROAGLOMERADOS ASFÁLTICOS EN CALIENTE Y SEMICALIENTE DEL TIPO f.
Fernández-Gómez, W. D., Rondón Quintana, H. A., & Reyes-Lizcano, F. (2013). A review of asphalt and asphalt mixture aging. Ingeniería e Investigación, 33(1), 5-12. https://doi.org/10.15446/ing.investig.v33n1.37659
Qin, Y., & Hiller, J. E. (2014). Understanding pavement-surface energy balance and its implications on cool pavement development. Energy and Buildings, 85, 389-399. https://doi.org/10.1016/j.enbuild.2014.09.076
Sanjuán, M. Á., Morales, Á., & Zaragoza, A. (2021). Effect of Precast Concrete Pavement Albedo on the Climate Change Mitigation in Spain. Sustainability, 13(20), 11448. https://doi.org/10.3390/su132011448
Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224-240. https://doi.org/10.1016/j.rser.2013.05.047
Xu, L., Wang, J., Xiao, F., EI-Badawy, S., & Awed, A. (2021). Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses. Applied Energy, 281, 116077. https://doi.org/10.1016/j.apenergy.2020.116077
Xu, X., Swei, O., Xu, L., Schlosser, C. A., Gregory, J., & Kirchain, R. (2020). Quantifying Location-Specific Impacts of Pavement Albedo on Radiative Forcing Using an Analytical Approach. Environmental Science & Technology, 54(4), 2411-2421. https://doi.org/10.1021/acs.est.9b04556
Zeng, W., Wu, S., Pang, L., Chen, H., Hu, J., Sun, Y., & Chen, Z. (2018). Research on Ultra Violet (UV) aging depth of asphalts. Construction and Building Materials, 160, 620-627. https://doi.org/10.1016/j.conbuildmat.2017.11.047
Zhong, Y. (2021). Research on Thermal Reflection and Cooling Curing Coating Material of Nano Modified Emulsified Asphalt for Urban Road Pavement. E3S Web of Conferences, 261, 02051. https://doi.org/10.1051/e3sconf/202126102051
Published
2025-12-18
How to Cite
Cabrera Ojeda, P. A., Elorza, E., Zapata Ferrero, I., Botasso, H. G., & Castro Luna Berenguer, A. M. del C. (2025). PAVIMENTOS DE MEZCLA ASFÁLTICA MODIFICADOS CON TiO2 Y SU APORTE A LA SUSTENTABILIDAD URBANA. Teks Del Sud, 6(1), 21-34. https://doi.org/10.53794/tds.v6i1.778
Section
Dossier
Copyright (c) 2025 Pablo Ariel Cabrera Ojeda, Eliana Elorza, Ignacio Zapata Ferrero, Hugo Gerardo Botasso, Ana María del Carmen Castro Luna Berenguer

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
