Endomorphisms in R2 : change of basis and ways of thinking in Linear Algebra

Keywords: teaching, base change in endomorphisms, modes of thinking, languages, semiotic representations

Abstract

The objective of this research work was to contribute to the understanding of the Base Change in Endomorphisms of R2, through the implementation of the theory of modes of thinking: Synthetic-Geometric, Analytical-Arithmetic and Analytical-Structural proposed by Anna Sierpinska (2000) and induced by the Geometric, Arithmetic and Algebraic languages. For this, didactic activities were designed where these languages are articulated that allow the transition between the different modes of thinking about the change of base in endomorphisms of R2. A quantitative approach with posttest only was used. Two groups were randomly selected: the experimental and the control. For the purpose of evaluating the design, the post-test was implemented in both groups. In the experimental group a greater mastery of the subject of study was demonstrated, which resulted in a more solid geometric interpretation in R2, as well as a precise use of definition and properties, with very good performance in the manipulation of matrices associated with endomorphism in different bases. On the other hand, the students of the control group will not be able to establish a connection between the modes of thinking, which had an impact on the understanding of the subject under study.

Downloads

Download data is not yet available.

Author Biographies

Rosana Mabel Colodro, Facultad de Ingeniería, Universidad Nacional de Salta, Argentina

Profesora en Matemática y Fïsica (Facultad de Ciencias Exactas, Universidad Nacional de Salta), Especialista en Investigación Educativa y Magister en la Enseñanza de la Matemática en el Nivel Superior (Universidad Nacional de Tucumán). Profesora de Álgebra Lineal y Geometría Analítica y Matemática 1, en la Facultad de Ciencias Exactas (U.N.Sa.), y de Álgebra Lineal y Geometría Analítica en la Facultad de Ingeniería (U.N.Sa.). Investigadora en temas relacionados con la Enseñanza de la Matemática.

Berejnoi Carlos, Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina

Ingeniero Metalúrgico y Doctor en Ingeniería (Facultad de Ingeniería UNLP), y especialista en Entornos Virtuales de Aprendizaje (Organización de Estados Iberoamericanos). Profesor de Análisis Matemático I y Materiales (para Ingeniería Civil) en la Facultad de Ingeniería de la UNSa. Investigador en temas relacionados con la enseñanza de la Matemática y con Ciencia de Materiales: propiedades mecánicas de aleaciones mecánicas (cristalinas
y amorfas) y estudio de la problemática de la transición dúctil frágil de aceros ferríticos.

Published
2024-05-11
How to Cite
Colodro, R. M., & Carlos, B. (2024). Endomorphisms in R2 : change of basis and ways of thinking in Linear Algebra. Cuadernos De Ingeniería, 15(V), 1-31. https://doi.org/10.53794/ci.v15i0.547